
BA6122A BA6122AF

スイッチングレギュレータIC BA6122A BA6122AF

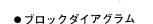
BA6122A、BA6122AFは、パルス幅変調方式 による2回路内蔵のスイッチングレギュレー タモノリシックICです。

5V出力基準電圧回路、 鋸歯状波発振回路と 誤差増幅器、コンパレータ、ドライバーがそ れぞれ2回路で構成されています。1電源の みをしゃ断させるSTOP機能、カーバッテリ -対策としてのリップル抑圧機能が付加され ており、ポータブルVTRの5V、9V用電源に 最適です。

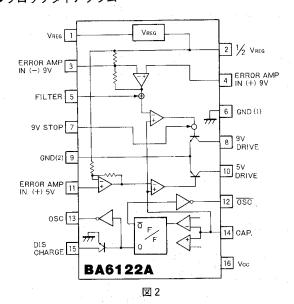
また、パッケージはLFパッケージのほか、 ミニフラットパッケージも用意しています。

。 ○[○]●特長

- v1)9V STOP機能付きで、5V電源のみの出力 が可能である。
- ※2)ダイレクトFB端子により、リップルを大幅 に軽減できる。


3) VREGの出力が取り出せる。

- 4)ドライバー出力デューティは、0~100%可 変でき、完全ON—OFFタイプである。
- 5)発振周波数精度がよく、起動特性ならびに 温度特性が安定している。
- 6) 誤差増幅器は位相補償内蔵タイプである。
- 7) 基準発振方形波出力が取り出せる。
- 8)変換効率が高い。


●用途

VTR電源部

汎用機器電源部

ſ₿.

-6-14

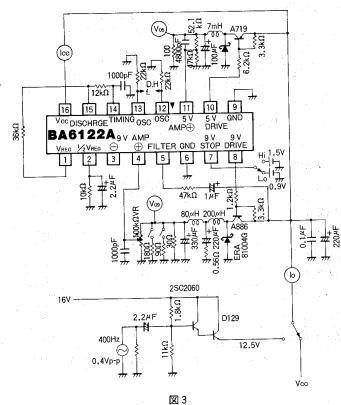
図1

●絶対最大定格(Ta-25℃)

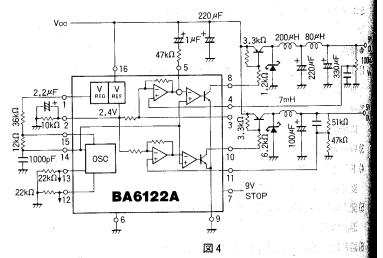
項目	記号	最大定格	単位 V	
電源電圧	Vcc	18		
許容損失	Pd	340*	mW	
動作温度範囲	Topr	-10~60	ĉ	
保存温度範囲	Tstg	-55~125	C	
 VREG流出電流	lp (Vreg)	5	mA	
8 pin流入電流	18	20	mA	
10pin流入電流	I ₁₀	10	mA	

※Ta=25℃以上で使用する場合は、1℃につき3.4mWを滅じる

タ


ROHM

BA6122A BA6122AF


●電気的特性 (特に指定のない限り Ta=25℃,	Vcc=12V_)
---------------------------	-----------

項、目	記号	Min.	Тур.	Max.	単 位	条件	測定回路
動作電源電圧範囲	Vcc .	8	12	16	V		図 3
無信号時電流	lo		5.5	8.0	mΑ	— —	図 3
VREG出力電圧	VREG	4.4	4.8	5.2	۷	_	図 3
VREG入力変動	ΔV reg $-$ r	_	3	<u>- 1</u>	mV	10V≦Vcc≦16V	図 3
VREG温度変化	$\triangle V_{REG} \triangle T$		200		ppm	—10℃≦Ta≦60℃	図 3
VREF出力電圧	VREF		2.4	_	V	R1=10kΩ	図 3.
VREF入力変動	∆Vrèg-r		2		mV	10V≦Vcc≦16V	図 3
発 振周波数	f	36	41	46	kHz	R == 36kΩ, R==12kΩ, CT=1000pF	図 3
発振周波数入力変動	∆f—R		-0.3	·	%	$\begin{array}{l} R_{A}=36k\Omega, R_{B}=12k\Omega, C_{T}=1000 pF\\ 10V \leq V_{CC} \leq 16V \end{array}$	図 3
基準発振出力デューティ(1)	D	14	20	26	%	R A=36kΩ, RB=12kΩ, CT=1000pF	図 3
基準発振出力電圧 (1)	н	3.7			V .	Ra=36kΩ,RB=12kΩ,CT=1000pF	図 3
基準発振出力デューティ(2)	. D	74	80	86	%	Ra=36kΩ,RB=12kΩ,CT=1000pF	図 3
基準発振出力電圧 (2)	Ħ	3.7			V	Ra=36kΩ, Rb=12kΩ, Cτ=1000pF	図 3
STOP入力電圧—HI	VH	1.5			V		図 3
STOP入力電圧—L0	VL	_		0.9	V		図 3
STOP入力入力電流	19	_	3	_	μA	Vн—1.5V	図 3

● 測定回路図

●応用例

STRUCT STRUCT

濡

注读()

閉

. R

 \mathbb{R}^{2}

ý

14

े. हि

36