Excellent Integrated System Limited

Stocking Distributor

Click to view price, real time Inventory, Delivery & Lifecycle Information:

<u>Fairchild Semiconductor</u> 2N5962

For any questions, you can email us directly: sales@integrated-circuit.com

Discrete POWER & Signal **Technologies**

2N5962

MMBT5962

NPN General Purpose Amplifier

This device is designed for use as low noise, high gain, general purpose amplifiers requiring collector currents to 50 mA. Sourced from Process 07. See 2N5088 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V_{CEO}	Collector-Emitter Voltage	45	V
V _{CBO}	Collector-Base Voltage	45	V
V _{EBO}	Emitter-Base Voltage	8.0	V
I _C	Collector Current - Continuous	100	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max Units		Max	
		2N5962	*MMBT5962		
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W	

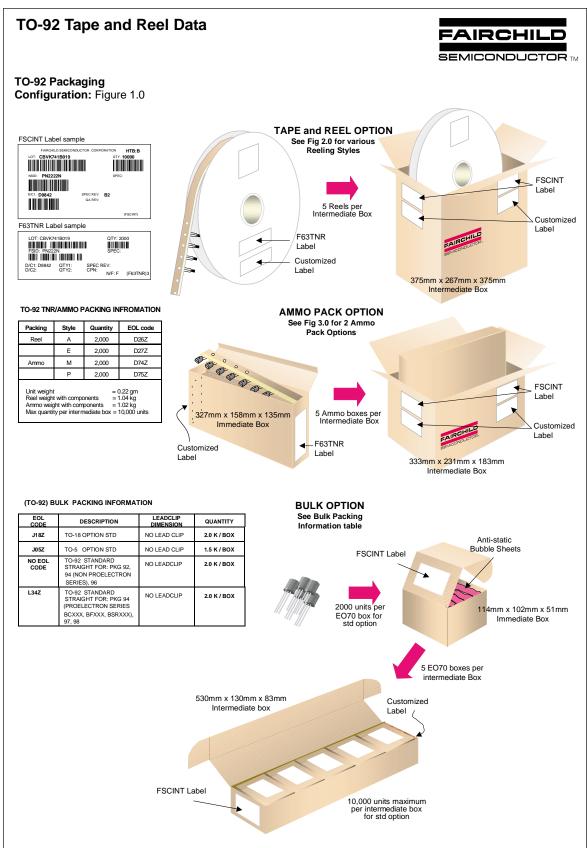
^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

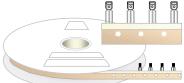
NPN General Purpose Amplifier


(continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_C = 5.0 \text{ mA}, I_B = 0$	45		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 10 \mu\text{A}, I_{E} = 0$	45		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu\text{A}, I_C = 0$	8.0		V
СВО	Collector Cutoff Current	$V_{CB} = 30 \text{ V}, I_{E} = 0$ $V_{CB} = 30 \text{ V}, I_{E} = 0, T_{A} = 65 \text{ °C}$		2.0 50	nA nA
EBO	Emitter Cutoff Current	$V_{EB} = 5.0 \text{ V}, I_{C} = 0$		1.0	nA
		$V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$	500 550 600	1400	
h _{FE}	DC Current Gain	$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \mu\text{A}$ $V_{CE} = 5.0 \text{ V}, I_{C} = 100 \mu\text{A}$	450 500		
√ _{CE(sat)}	Collector-Emitter Saturation Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 10 \text{ mA}$ $I_{C} = 10 \text{ mA}, I_{B} = 0.5 \text{ mA}$	600	1400 0.2	V
/ _{BE(on)}	Base-Emitter On Voltage	$V_{CE} = 5.0 \text{ V}, I_{C} = 1.0 \text{ mA}$	0.5	0.7	V
SMALL S	GIGNAL CHARACTERISTICS Collector-Base Capacitance	V _{CB} = 5.0 V		4.0	pF
Ceb	Emitter-Base Capacitance	V _{EB} = 0.5 V		6.0	pF
lfe	Small-Signal Current Gain	$I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$ f = 1.0 kHz $I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V},$	600	200	
NF	Noise Figure	$\begin{split} &f = 100 \text{ MHz} \\ &V_{CE} = 5.0 \text{ V, } I_{C} = 10 \mu\text{A}, \\ &R_{S} = 10 k\Omega, f = 1.0 \text{ kHz}, \\ &B_{W} = 400 \text{ Hz} \\ &V_{CE} = 5.0 \text{ V, } I_{C} = 100 \mu\text{A}, \end{split}$	1.0	3.0	dB
		$R_S = 1.0 \text{ k}\Omega, f = 1.0 \text{ kHz},$ $B_W = 400 \text{ Hz}$ $V_{CE} = 5.0 \text{ V}, I_C = 100 \mu\text{A},$ $R_C = 10 \text{ k}\Omega, f = 1.0 \text{ kHz}$		6.0	dB
		$R_S = 10 \text{ k}\Omega$, $f = 1.0 \text{ kHz}$, $B_W = 400 \text{ Hz}$ $V_{CE} = 5.0 \text{ V}$, $I_C = 100 \mu\text{A}$,		4.0	dB
		R_S = 100 kΩ, f = 1.0 kHz, B_W = 400 Hz V_{CE} = 5.0 V, I _C = 10 μA, R_S = 10 kΩ, f = 10 Hz -10 kHz		8.0	dB
	1	INS - 10 N22, I = 10 I IZ -10 KMZ		3.0	1

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

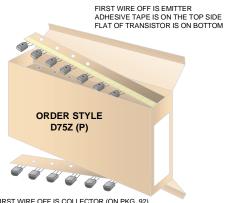

Datasheet of 2N5962 - TRANS NPN 45V 0.1A TO-92

TO-92 Tape and Reel Data, continued

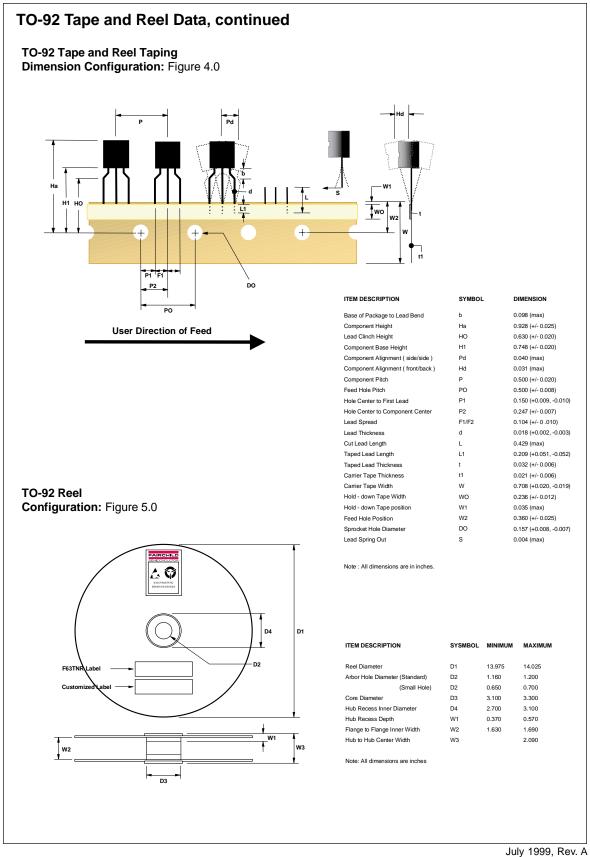
TO-92 Reeling Style Configuration: Figure 2.0

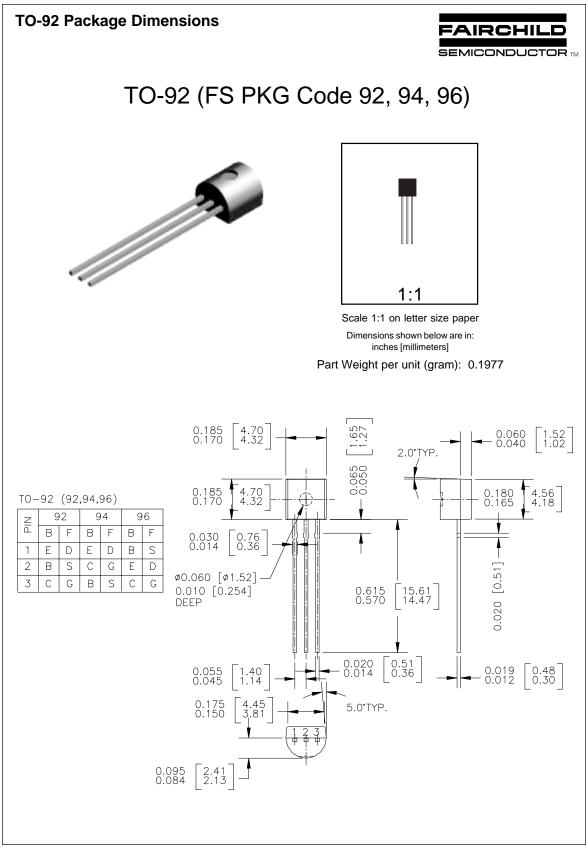
Style "A", D26Z, D70Z (s/h)

Machine Option "E" (J)

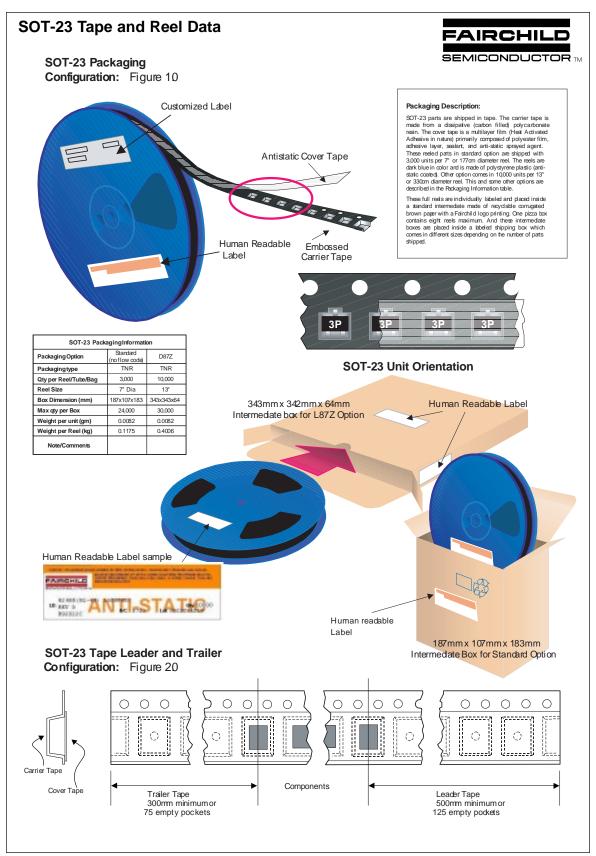


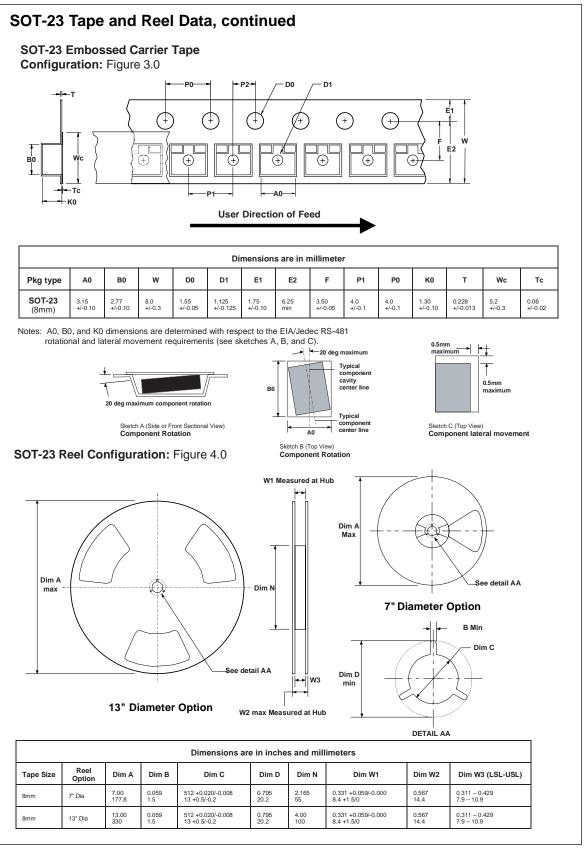
Style "E", D27Z, D71Z (s/h)


TO-92 Radial Ammo Packaging Configuration: Figure 3.0


ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON BOTTOM

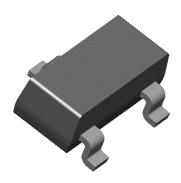
FIRST WIRE OFF IS COLLECTOR (ON PKG. 92) ADHESIVE TAPE IS ON BOTTOM SIDE FLAT OF TRANSISTOR IS ON TOP

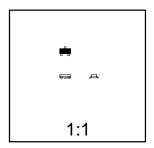




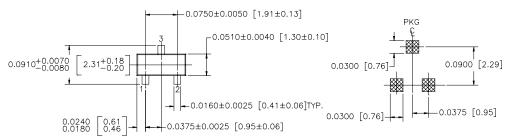
Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

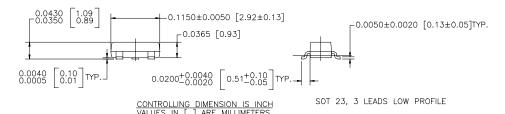
Datasheet of 2N5962 - TRANS NPN 45V 0.1A TO-92





SOT-23 Package Dimensions


SOT-23 (FS PKG Code 49)



Scale 1:1 on letter size paper Dimensions shown below are in:

inches [millimeters]
Part Weight per unit (gram): 0.0082

LAND PATTERN RECOMMENDATION

NOTE: UNLESS OTHERWISE SPECIFIED

- STANDARD LEAD FINISH 150 MICROINCHES / 3.81 MICROMETERS MINIMUM TIN / LEAD (SOLDER) ON ALLOY 42
- 2. REFERENCE JEDEC REGISTRATION TO-236, VARIATION AB, ISSUE G, DATED JUL 1993

Distributor of Fairchild Semiconductor: Excellent Integrated System Limited

Datasheet of 2N5962 - TRANS NPN 45V 0.1A TO-92

Contact us: sales@integrated-circuit.com Website: www.integrated-circuit.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

SyncFET™ $ACEx^{TM}$ FASTr™ PowerTrench® TinyLogic™ **QFET™** Bottomless™ GlobalOptoisolator™ QSTM UHC™ $\mathsf{G}\mathsf{T}\mathsf{O}^{\mathsf{TM}}$ CoolFET™ **VCX**TM QT Optoelectronics™ $CROSSVOLT^{TM}$ HiSeC™ DOME™ ISOPLANAR™ Quiet Series™ E²CMOSTM MICROWIRE™ SILENT SWITCHER®

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the

 A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. G