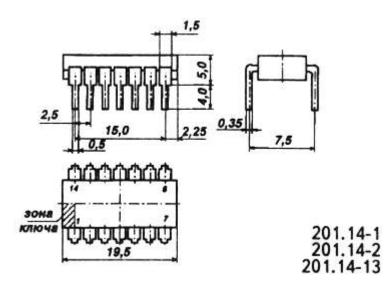
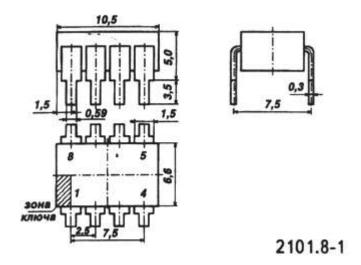
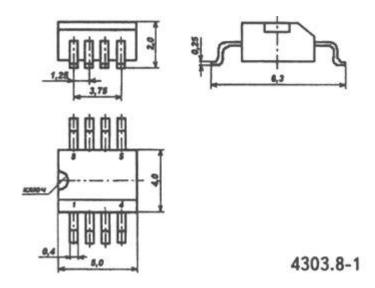

140УД7

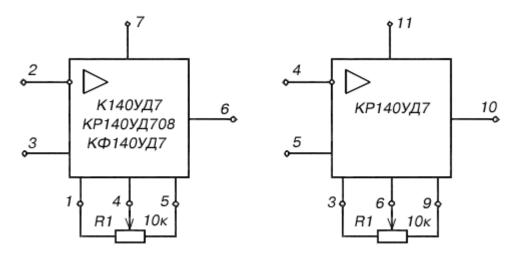

Микросхемы представляют собой операционые усилители средней точности с внутренней частотной коррекцией и защитой выхода от короткого замыкания. Корпус К140УД7 типа 301.8-2, масса не более 1,5 г., КР140УД7 типа 201.14-1, КР140УД608 типа 2101.8-1, КФ140УД7 типа 4303.8-1, КБ140УД7-4 - бескорпусный.

Корпус К140УД7



301.8-2 301.8-2.02


Корпус КР140УД7


Корпус КР140УД708

Корпус КФ140УД7

Схемы балансировки

Схемы балансировки К140УД7 и КР140УД7

Назначение выводов КР140УД7:

- 1,2,7,8,13,14 свободные;
- 3,9 балансировка;
- 4 вход инвертирующий;
- 5 вход неинвертирующий;
- 6 напряжение питания - U_{n} ;
- 10 выход;
- 11 напряжение питания $+U_n$;
- 12 коррекция;

Назначение выводов К140УД7, КР140УД708, КФ140УД7:

- 1,5 балансировка;
- 2 вход инвертирующий;
- 3 вход неинвертирующий;
- 4 напряжение питания - U_{n} ;
- 6 выход;
- 7 напряжение питания $+U_n$;
- 8 коррекция;

Электрические параметры

1	Напряжение питания	±15 B ±10%
2	Диапазон синфазных входных напряжений при U_n = ±15 B	±12 B
3	Максимальное выходное напряжение при U_n = ± 15 B, $U_{вx}$ = $\pm 0,1$ B, R_H = 2 кОм	±10,5 B
4	Напряжение смещения нуля при U_n = ± 15 B, R_H = 2 кОм К140УД7, КР140УД7, КР140УД708 КФ140УД7	не более 9 мВ не более 6 мВ
5	Входной ток при U_n = ±15 B, R_H = 2 кОм	не более 400 нА
6	Разность входных токов при U_n = ±15 B, R_H = 2 кОм	не более 200 нА
7	Ток потребления при U_n = ±15 B, R_H = 2 кОм	не более 3,5 мА
8	Коэффициент усиления напряжения	

К140УД7, КР140УД7, КР140УД708 КФ140УД7	не менее 30000 не менее 25000
9 Входное сопротивление	не менее 400 кОм

Предельно допустимые режимы эксплуатации

1	Напряжение питания	<u>±</u> (517) B
2	Входное синфазное напряжение	±12 B
3	Входное дифференциальное напряжение	не более 24 B
4	Время, в течении которого допустимо короткое замыкание выхода при T=-45+35 ° C при T=+35+85 ° C для К Φ 140УД7 при T=-10+70 ° C	не ограниченно 60 с 5 с

Рекомендации по применению

Питание КФ140УД7 можно осуществлять ассиметричными напряжениями или от одного источника напряжения при условии: $10 \text{ B} \leq |U_{\pi 1}| + |U_{\pi 2}| \leq 33 \text{ B}$. При этом нагрузка подключается к "+" или "-" источника питания. Бескорпусную ИС К140УД7-4 следует приклеивать к подложке нерабочей стороной, также должен быть обеспечен такой отвод теплоты, чтобы температура кристалла состовляла не более 135 ° С.

Зарубежные аналоги

μ Α741ΗC, μ Α741ΡC

Литература

Интегральные микросхемы и их зарубежные аналоги: Справочник. Том 7./А. В. Нефедов. - М.:ИП РадиоСофт, 1999г. - 640с.:ил.

Отечественные микросхемы и зарубежные аналоги Справочник. Перельман Б.Л.,Шевелев В.И. "НТЦ Микротех", 1998г.,376 с. - ISBN-5-85823-006-7

Интегральные микросхемы Справочник. Тарабрин Б.В.,Лунин Л.Ф.,Смирнов Ю.Н. "Радио и связь", 1983 г.,528 с. - ББК 32.844.1 И73