А.П.Зильбер

КЛИНИЧЕСКАЯ ФИЗИОЛОГИЯ В АНЕСТЕЗИОЛОГИИ И РЕАНИМАТОЛОГИИ

УДК 617-089.5+616-036.882/-092 ББК 54.5 3-61

Все права защищены. Никакая часть данной книги не может быть воспроизведена в любой форме и любыми средствами без письменного разрешения владельцев авторских прав.

Рецензент: **Е.А.Дамир**, проф., зав. кафедрой анестезиологии и реаниматологии Центрального ордена Ленина института усовершенствования врачей.

Серия книг профессора А.П.Зильбера приурочена к 90-летнему юбилею автора и включает как ранние издания («Клиническая физиология для анестезиолога», «Клиническая физиология в анестезиологии и реаниматологии»), так и более поздние («Этюды критической медицины», «Этюды респираторной медицины», «Этюды медицинского права и этики»).

Текст печатается по изданию: Зильбер А.П. Клиническая физиология в анестезиологии и реаниматологии. – М.: Медицина, 1984. – 480 с. : ил.

Книга является фундаментальным руководством по клинической физиологии применительно к запросам анестезиологии и реаниматологии. В нем изложена клиническая физиология синдромов клинических состояний, независимо от нозологической формы болезней, при которых эти синдромы развились, а также физиологические эффекты интенсивной терапии. Рассмотрена возможность использования клинико-физиологического анализа в специальных разделах медицины — акушерстве, педиатрии, кардиологии, нефрологии, нейрохирургии, травматологии и др.

Руководство рассчитано на анестезиологов и реаниматологов. В книге 56 рис., 15 табл., список литературы – 218 названий.

Зильбер, Анатолий Петрович.

3-61 Клиническая физиология в анестезиологии и реаниматологии. – Москва: МЕДпресс-информ, 2022. – 604 с.: ил. ISBN 978-5-907504-56-1.

УДК 617-089.5+616-036.882/-092 ББК 54.5

ISBN 978-5-907504-56-1

- © Зильбер А.П., 1984
- © Оформление, оригинал-макет. Издательство «МЕДпресс-информ», 2022
- © Иллюстрация на обложке. © civil / Фотобанк «Фотодженика», 2022

СОДЕРЖАНИЕ

От автора	9
Введение	
Часть І. Клиническая физиология главных синдромов критических состояний	22
Глава 1. Нарушение реологии крови и острая гиповолемия.	22
Системы микро- и макроциркуляции крови	23
Нарушение реологических свойств крови	30
Физиологические эффекты гиповолемии	39
Функциональные критерии	43
Принципы интенсивной терапии гиповолемии	49
Глава 2. Острая дыхательная недостаточность	51
Легкие в патологии различных систем организма	51
Физиологические механизмы острой	
дыхательной недостаточности	56
Клиническая физиология гипоксии и гиперкапнии	63
Функциональные критерии	67
Функциональное исследование дыхания в практике ИТАР	71
Исследование различных физиологических механизмов ОДН	75
Принципы интенсивной терапии	
Глава 3. Рассеянное внутрисосудистое свертывание крови	97
Свертывание крови и фибринолиз	97
Физиологические механизмы синдрома рассеянного)
внутрисосудистого свертывания крови	107
Функциональные критерии рассеянного	
внутрисосудистого свертывания крови	
Принципы интенсивной терапии	110

Глава 4.	Гепаторенальный синдром	114
	Физиологические механизмы	114
	Функциональные критерии	116
	Принципы интенсивной терапии	117
Глава 5.	Острая церебральная недостаточность	118
	Физиологические механизмы	119
	Функциональные критерии	123
	Прогноз неврологического статуса	125
	Принципы интенсивной терапии	128
Глава 6.	Болевой синдром	132
	Физиологические механизмы	133
	Объективные критерии (альгометрия)	136
	Принципы интенсивной терапии	
Глава 7.	Операционный стресс	145
	Агрессивные факторы оперативного вмешательства	
	Физиологические механизмы операционного	
	стресса	147
	Функциональные критерии	153
	Принципы физиологической защиты	154
Глава 8.	Нарушение метаболизма	158
	Пути управления метаболизмом	158
	Нарушение энергетического и теплового баланса	159
	Нарушение осмолярности и водно-электролитного	1.64
	баланса	
	Нарушение кислотно-щелочного состояния	1/9
Часть П	. Клиническая физиология методов	
	вной терапии, анестезии и реанимации	188
Глава 9.	Компоненты анестезии (атараксия,	
	псия, анальгезия)	188
	Этапы и компоненты анестезиологического	
	пособия (функциональная характеристика)	189
	Стандартизация функционального эффекта общей анестезии	108
	Клиническая физиология местной анестезии	
	Клиническая физиология местной анестезии	
	клипическая физиология перидуральной олокады	207

Глава 10. Реанимация при остановке сердца и дыхания	211
Физиологические основы искусственной	
вентиляции легких при реанимации	212
Физиологический механизм искусственного	
кровообращения при сжатии грудной клетки	
Клинико-физиологическая оценка прямого массажа сердца	
Клинико-физиологическая оценка электрической дефибрилляции	218
Физиологические основы медикаментозной терапии при реанимации	219
Противоишемическая защита мозга	220
Глава 11. Инфузионная и трансфузионная терапия	224
Коррекция объема и реологических свойств крови	
Биохимическая и коллоидно-осмотическая	
коррекция	230
Инфузия медикаментов	232
Инфузионная терапия как компонент дезинтоксикационной	234
Парентеральное питание	234
Методы инфузионной терапии	
Функциональный контроль эффекта инфузионной терапии	
Глава 12. Вспомогательное кровообращение	241
Метод контрпульсации	
Шунтирование желудочков	
Функциональные эффекты	
Глава 13. Респираторная терапия	
Оптимизация естественных механизмов	243
дренирования мокроты	246
Обработка и искусственное удаление мокроты	
Специальные режимы спонтанной вентиляции	
Оптимизация свойств дыхательной смеси	0
(гелиевая терапия)	258
Глава 14. Антигипоксическая терапия (ингаляционная,	
трансфузионная и медикаментозная)	260
Действие кислорода на функции организма	260

Ингаляционная оксигенотерапия	267
Гипербарическая оксигенация	269
Энтеральная оксигенация	272
Трансфузионная оксигенация	272
Медикаментозная антигипоксическая терапия	276
Глава 15. Искусственная вентиляция легких	280
Влияние искусственной вентиляции легких на функции организма	280
Физиологические эффекты различных режимов искусственной вентиляции легких	281
Клинико-физиологические аспекты процедуры искусственной вентиляции легких	
Объективные критерии	294
Глава 16. Искусственная миоплегия	298
Мионевральный синапс и миорелаксанты	298
Миорелаксанты и мышечная система	303
Миорелаксанты и различные функции организма	313
Глава 17. Детоксикационная терапия	320
Стимуляция естественной детоксикации	320
Искусственная детоксикация	322
Синдроматическая терапия	323
Глава 18. Мониторизация	324
Принципы мониторизации	
Методы и цели	326
Параметры мониторизации	328
Часть III. Клинико-физиологический анализ ИТАР	
в повседневной практике	330
Глава 19. Акушерство	330
Физиологические основы анестезиологического пособия в акушерстве	331
Аспирационный пневмонит (синдром Мендельсона)	341
Амниотическая эмболия	
Экпампсия	354

Глава 20. Неонатология и педиатрия	364
Физиологические основы анестезиологического	
и реанимационного пособия у детей	
Реанимация новорожденных	
Респираторный дистресс-синдром новорожденных	
Бронхиолит	
Острый стенотический ларинготрахеит	393
Синдром внезапной смерти младенца	397
Глава 21. Пульмонология	400
Влияние анестезиологического пособия на дыхание	400
Анестезиологическое пособие при патологии легких	401
Послеоперационная дыхательная недостаточность	405
Тромбоэмболия легочной артерии	412
Бронхоастматический статус	416
Отек легких	418
Синдром шокового легкого	421
Глава 22. Кардиология	426
Влияние анестезии на кровообращение	426
Анестезиологическое пособие при сопутствующей	
патологии системы кровообращения	
Внезапная кардиальная смерть	
Кардиогенный шок	436
Сердечная астма и кардиогенный отек легких	442
Глава 23. Гепатология	446
Влияние анестезиологического пособия	
на функции печени	
Анестезиологическое пособие при патологии печени	448
Острая печеночная недостаточность	450
Глава 24. Нефрология	466
Влияние анестезии на функцию почек	466
Анестезиологическое пособие при патологии почек	467
Острая почечная недостаточность	468
Глава 25. Гематология	484
Влияние анестезиологического пособия	
на свертывающую систему крови	484

Клиническая физиология коагулопатических кровотечений	486
Геморрагический шок	
Синдром массивного крововозмещения	
Массивный внутрисосудистый гемолиз	
Глава 26. Неврология и нейрохирургия	502
Синдром злокачественной гипертермии	
при анестезии	502
Эпилептический статус	504
Столбняк	506
Поражение головного мозга	507
Поражение спинного мозга	514
Глава 27. Гастроэнтерология	520
Функциональная и метаболическая коррекция	
при острой хирургической патологии живота	520
Стрессовые поражения пищеварительного тракта	525
Эрозии, язвы и кровотечения в пищеварительный тракт	526
Острое расширение желудка и паралитическая непроходимость кишечника	531
Острейший гастроэнтерит	536
Глава 28. Травматология	541
Травматический шок	541
Синдром жировой эмболии	
Газовая эмболия	
Глава 29. Иммунологические аспекты практики ИТАР	558
Влияние анестезиологического и реанимационного пособия на иммунитет	550
Аллергия в практике ИТАР	
Анафилактический шок	
Септический шоковый синдром	571
Список литературы	580
Предметный указатель	594

OT ABTOPA

Клиническая физиология критических состояний — сравнительно новый раздел медицины. Тот принцип изложения материалов, с которым читатель столкнется в данном руководстве, кажется наиболее подходящим для рассмотрения клинико-физиологических проблем. Мы систематизировали в трех частях книги физиологию основных синдромов, методов интенсивной терапии и принципы частного физиологического анализа. Такой план построения руководства обусловлен не только невозможностью дать систематическое изложение физиологии каждой системы организма, как это мы старались сделать в «Клинической физиологии для анестезиолога» (М., 1977) и объемом книги, но также принципом, обоснованным во введении к руководству.

Высказывая отношение к той или иной клинико-физиологической проблеме, мы по принципиальным соображениям стремились придать книге характер беседы с читателем. Мы полагаем, что стиль рассуждений стимулирует активность читателя в восприятии материала, его согласие и несогласие с позицией автора и, следовательно, заставляет размышлять над проблемой, а не бездумно доверяться чьему-то авторитету. В столь мало изученной отрасли знаний, как клиническая физиология критических состояний, активная, заинтересованная и, может быть, даже творческая позиция читателя представляется нам наиболее перспективной в разрешении трудных и далеко не однозначно толкуемых клинико-физиологических проблем анестезиологии и реаниматологии. Мы стремились к тому, чтобы и рисунки не просто иллюстрировали текст, но также вызвали у читателя желание поразмышлять.

Казалось бы, само название руководства определяет главный контингент его читателей — анестезиологов и реаниматологов. Однако анестезиологи и реаниматологи почти всегда работают на чужой территории как в прямом, так и в переносном смысле: с хирургом в операционной, с акушером в родильном зале, с кардиологом, невропатологом, педиатром в палатах интенсивной терапии. Но если при разных специ-

альностях, школах, традициях мы вместе ведем больного, то следует выработать единую клинико-физиологическую платформу действий.

Автор надеется, что книга представит интерес не только для анестезиологов и реаниматологов, но и для других специалистов.

ВВЕДЕНИЕ

В жизнедеятельности человеческого организма и его взаимодействии с внешней средой можно выделить три состояния: здоровье, болезнь и терминальное, или критическое, состояние.

Если какой-то внешний или внутренний фактор подействовал на организм, но компенсаторные механизмы сохранили постоянство внутренней среды (гомеостаз), то это состояние можно обозначить как *здоровье*.

В дальнейшем постагрессивные реакции, приводящие организм к терминальному состоянию, протекают по следующей схеме. Первичная агрессия вызывает местную специфическую реакцию, характерную для каждого из многочисленных факторов агрессии: воспаление в ответ на инфекцию, гемостаз — на повреждение сосуда, отек или некроз — на ожог, торможение нервных клеток под действием анестетика и т.п.

В зависимости от степени агрессии в общую постагрессивную реакцию включаются различные функциональные системы организма, обеспечивающие мобилизацию его защитных сил. Эта фаза общей постагрессивной реакции одинакова при различных факторах агрессии и начинается стимуляцией гипоталамо-гипофизарной, а через нее симпатико-адреналовой систем. Наблюдаются усиление вентиляции, кровообращения, повышенная работа печени, почек, стимулируются иммунные реакции, меняются окислительно-восстановительные процессы в тканях, чтобы увеличить производство энергии. Все это ведет к повышенному катаболизму углеводов и жиров, расходу ферментативных факторов, смещению электролитов и жидкостей в клеточном, внеклеточном и внутрисосудистом пространствах, гипертермии и т.п. Такое состояние можно обозначить как болезнь (рис. 1).

Если эта фаза (так называемая катаболическая) общей постагрессивной реакции гармонична и адекватна, болезнь не переходит в критическое состояние и не требует вмешательства реаниматологов. Несмотря на сходство физиологических механизмов общей постагрессивной реакции при

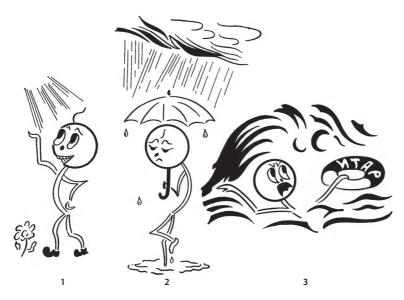


Рис. 1. Три состояния жизненных функций: здоровье (1), болезнь (2), критическое (терминальное) состояние (3), при котором только спасательный круг с надписью «ИТАР» дает больному возможность «не утонуть».

различных факторах агрессии, до тех пор, пока ауторегуляция функций сохранена, в клинической картине болезни преобладают специфические явления. Наиболее радикальная терапия этого периода — этиологическая. Естественно, что ведет больного хирург, кардиолог, невропатолог — специалист, которому «принадлежит» данная болезнь по ее этиологии и патогенезу.

Но слишком большая или длительная агрессия, несовершенная реактивность организма, сопутствующая патологии каких-либо функциональных систем, делают общую постагрессивную реакцию негармоничной и неадекватной. Если какая-либо функция истощилась, остальные неизбежно нарушаются, и общая постагрессивная реакция превращается из защитной в убивающую организм: *патогенез* становится *танатогенезом*. Теперь полезная ранее гипервентиляция ведет к респираторному алкалозу и снижению мозгового крово-

¹ Танатогенез – физиологические механизмы умирания – назван по имени древнегреческого бога смерти Танатоса.

тока, централизация гемодинамики нарушает реологические свойства крови и сокращает ее объем. Гемостатическая реакция превращается в рассеянное внутрисосудистое свертывание с опасным тромбообразованием или неуправляемой кровоточивостью. Иммунные и воспалительные реакции не просто блокируют микроб, но вызывают анафилактический шок или бронхиолоспазм и пневмонит. Теперь уже сгорают не только резервы энергетических веществ, но и структурные белки, липопротеиды и полисахариды, сокращая функциональные возможности органов. Наступает декомпенсация кислотно-щелочного и электролитного состояния, в связи с чем инактивируются ферментативные системы и передача информации. Это и есть терминальное (критическое) состояние.

Мы изобразили эти взаимозависимые и взаимоусиливающиеся расстройства жизненных функций организма в виде переплетающихся порочных кругов, среди которых можно выделить три главных (рис. 2).

Первый круг — нарушение регуляции жизненно важных функций, когда повреждаются не только центральные регулирующие механизмы (нервные и гормональные), но и тканевые (кининовые системы, действие биологически активных веществ типа гистамина, серотонина, простагландинов, системы цАМФ, регулирующие кровоснабжение и метаболизм органов, проницаемость мембран и т.п.). Развиваются синдромы, обязательные для терминального состояния любой этиологии: нарушение реологических свойств крови, гиповолемия, коагулопатия, поражение метаболизма (второй порочный круг). Третий круг — органные расстройства: острая функциональная недостаточность надпочечников, легких, мозга, печени, почек, желудочно-кишечного тракта, кровообращения.

Каждое из перечисленных расстройств может быть выражено в различной степени, но если специфическая патология достигла уровня критического состояния, элементы всех этих расстройств существуют всегда, поэтому любое критическое состояние следует рассматривать как многоорганную недостаточность.

К сожалению, сегодня не существует универсального объективного критерия, позволяющего разграничить болезнь и критическое состояние, да и едва ли это возможно. Вместе с тем имеются попытки количественного выражения тяжести критического состояния, как, например, шкала лечебных действий (TISS), предложенная в 1974 г. D.J.Cullen и соавт. В соответствии

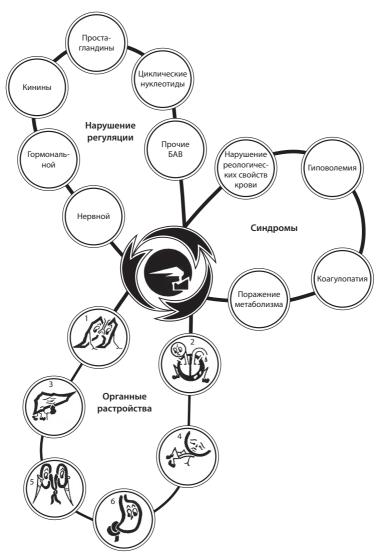


Рис. 2. Поражение жизненных функций при критическом состоянии. Независимо от специфики первичного поражения, любая патология, дошедшая до стадии терминального (критического) состояния, характеризуется нарушением всех видов регуляции, многочисленными синдромами и органными расстройствами: поражением легких (1), сердца (2), печени (3), мозга (4), почек (5), пищеварительного тракта (6). БАВ – биологически активные вещества (серотонин, гистамин, ангиотензин и др.).

Таблица 1

Гемодинамика в различных сосудах¹

			•				
Тип сосуда	Дпа-	Коли-	Общая	Дли-	Фракция	Внутрисо-	Градиент дав-
	метр,	<i>пество</i>	площадь	на,	огәтдо	судистое	ления относи-
	MM	cocydos	сечения,	мм	объема	давление,	тельно длины
			\mathcal{MM}^2		крови, %	мм рт.ст.²	сосуда, мм
							рт.ст./мм
Аорта	10	1	0.8×10^{2}	4×10^{2}	2,0	100	0,0075
Крупные артерии	3	40	3×10^{2}	2×10^{2}	4,0	76	0,0215
Главные ветви артерий	1	009	5×10^{2}	10^2	3,4	92,7	0,129
Конечные ветви	9,0	1800	5×10^{2}	10	1,7	8,62	0,330
Мелкие артерии	0,019	4×10^7	$1,1\times10^{4}$	3,5	2,7	76,5	5,97
Артериолы	0,007	4×10^{8}	$1,5 \times 10^4$	6,0	1,0	55,6	32,1
Капилляры	0,0037	$0,0037 \mid 1,8{\times}10^9 \mid$	$1,8 \times 10^4$	0,2	0,3	25,1	9,68
Посткапиллярные венулы	0,0073	$5,8\times10^{9}$	$2,5\times10^{5}$	0,2	3,6	4,5	1,90
Венулы	0,021	$1,2\times10^{9}$	$3,7 \times 10^5$	0,1	25,6	4,1	0,3
Мелкие вены	0,037	8×10^7	$8{\times}10^4$	3,4	18,6	3,8	0,5
Главные венозные ветви	2,4	009	$2,7 \times 10^3$	10^{2}	18,6	2,1	0,004
Крупные вены	6,0	40	$1,1\times10^{3}$	2×10^2	15,2	1,7	0,002
Полая вена	12,5	1	$1,2\times10^{2}$	4×10^2	3,4	1,3	0,003

по: Peripheral circulation / Ed. P.C.Johnson. – N.Y.: J.Wiley, 1978, р. 3.

перевода миллиметров ртутного столба в килопаскали (по СИ) указанную в таблице величину надо умножить на 0,133.

РАССЕЯННОЕ ВНУТРИСОСУДИСТОЕ СВЕРТЫВАНИЕ КРОВИ

Синдром рассеянного внутрисосудистого свертывания крови (PBC) является компонентом любой патологии, дошедшей до стадии критического состояния. Этот синдром фигурирует в литературе под множеством названий: коагулопатия потребления, синдром острой дефибринации, тромбогеморрагический синдром, синдром ДВС (диссеминированного внутрисосудистого свертывания) и др. От изобилия названий он не становится ни более понятным, ни менее опасным, хотя в последние годы появились новые сведения, заставляющие пересмотреть многие казавшиеся незыблемыми истины патогенеза и лечения РВС.

Суть синдрома PBC состоит в образовании мелких фибринных сгустков внутри сосудов, что ведет к двум возможным следствиям, встречающимся порознь или вместе: во-первых, к блокаде систем микроциркуляции и связанными с этим ишемии и некрозу органов, во-вторых, к трудно останавливаемому кровотечению. Чтобы разобраться в сущности синдрома PBC, целесообразно рассмотреть следующие проблемы: 1) свертывание крови и фибринолиз; 2) физиологические механизмы синдрома PBC; 3) принципы интенсивной терапии.

Свертывание крови и фибринолиз

Функции системы крови и ее составной части – системы лимфы – чрезвычайно многообразны. Большинство этих функций связано с транспортной ролью крови и лимфы, которые переносят газы, питательные вещества, гормоны, медиаторы, подлежащие экскреции продукты метаболизма, тепло. Помимо транспортных, кровь и лимфа выполняют собственные, присущие только им функции: защиту организма выработкой иммунных тел или действием клеток и лимфы, буферную роль в поддержании нормального состава воды, электролитов,

кислых и щелочных продуктов во всех тканях и средах организма и, наконец, тромбообразование, спасающее организм от кровопотери, или тромболиз, предупреждающий ишемию.

Вопросами свертывания крови медицина занимается более 100 лет. Несмотря на большие успехи, достигнутые в изучении этой проблемы, она еще во многом остается неясной. Заложенная на рубеже прошлого и нынешнего столетия сравнительно простая по сути ферментативная теория Шмидта—Моравица обросла таким обилием новых сведений, что разобраться в них полностью – дело будущего. Однако повседневная практика не позволяет реаниматологу ждать достижения абсолютной истины, потому что останавливать или предупреждать тромбозы и коагулопатические кровотечения надо уже сегодня.

Обеспечивая нормальное состояние системы кровообращения, свертывание крови в свою очередь зависит от функционального состояния многих систем организма. На систему свертывания крови влияют объем циркулирующей крови и скорость кровотока, газообмен, состояние эндокринной системы, костного мозга, печени, селезенки, почек, лимфатической системы. Свертывание меняется при изменении реологических свойств крови, кислотно-щелочного состояния, электролитного баланса. Оно, наконец, зависит от функционального состояния собственно свертывающей, антикоагулянтной и фибринолитической систем крови. Поскольку при критическом состоянии меняется функциональное состояние всех перечисленных систем, характер свертывания крови не может не измениться.

Чтобы разобраться в невероятном многообразии факторов, которым приписывают участие в свертывании крови, необходимо заранее договориться о некоторых принципиальных положениях.

1. Существуют специальные системы, поддерживающие жидкое состояние крови, пока не возникнет нужда в местном образовании тромба, необходимого для остановки кровотечения из поврежденного сосуда. При нормальном течении процесса кровь в остальной части системы кровообращения остается жидкой, а образовавшийся для гемостаза тромб не растворяется фибринолитической системой.

При аномальных условиях возможны три варианта отклонений: а) тромб не образуется, и кровотечение не останавливается; б) тромбы образуются везде — и там, где они нужны для гемостаза, и в неповрежденных сосудах, где они вызыва-

ют ишемию тканей; в) образовавшийся тромб растворяется, и кровотечение возобновляется.

2. Чтобы образовался тромб, необходимо воздействие трех участников этого процесса: сосудистой стенки, форменных элементов крови и плазмы. Каждый участник тромбообразования несет в себе следующие группы веществ: факторы свертывания и фибринолиза, активаторы того и другого процесса, ингибиторы того и другого процесса, ко- и профакторы того и другого процесса, активаторы и ингибиторы ко- и профакторов обоих процессов.

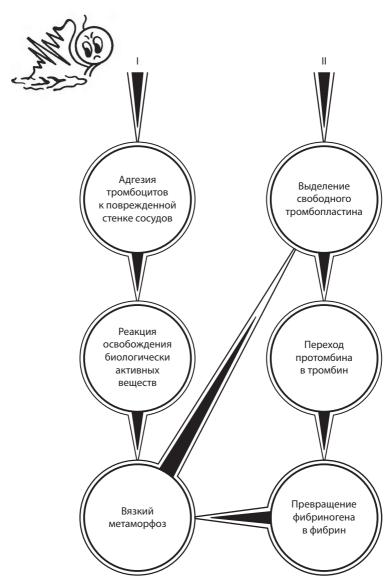
Поскольку эта книга – руководство по клинической физиологии, в дальнейших рассуждениях мы будем употреблять названия лишь минимального количества факторов, необходимых для решения клинических проблем или обоснования физиологических механизмов.

- 3. Внутри сосудов идет непрерывный процесс образования и растворения фибрина, необходимого для выстилки изнутри всего сосудистого русла, камер сердца, клапанов, нитей и т.д., хотя есть сомнения в том, что такой процесс идет непрерывно. Местный гемостаз при повреждении сосуда близкий, но не идентичный процесс: это не просто образование фибрина, а вязкий метаморфоз тромбоцитов, их склеивание с возникновением пластинчатой тромбоцитарной «пробки». Затем на ее основе образуется фибринный сгусток, в котором останавливаются клеточные элементы крови, возникают молекулярная перестройка и ретракция тромба, плотно соединяющегося с сосудистой стенкой в месте ее повреждения. Спазм поврежденного сосуда с выходом из сосудистой стенки биологически активных веществ важный компонент местного гемостаза.
- 4. В свертывании крови большую роль играют электрокинетические явления. Установлено, что сосудистая стенка имеет электрический заряд. Интима по отношению к адвентиции заряжена отрицательно, и трансмуральный потенциал составляет около 10–15 мВ. Определенный электроотрицательный заряд несут тромбоциты и эритроциты. Все это препятствует склеиванию тромбоцитов и эритроцитов между собой и с сосудистой стенкой.

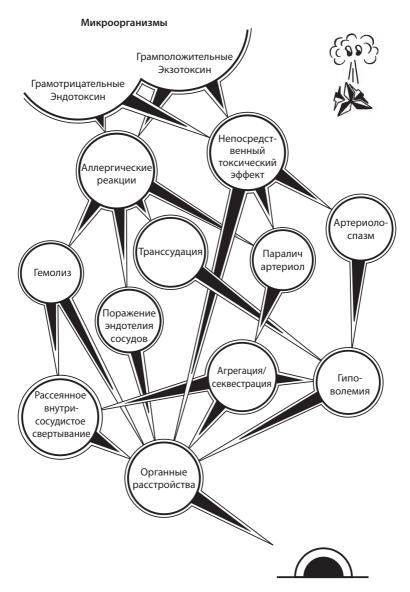
Различные медиаторы (в частности, катехоламины, ацетилхолин), активные полипептиды (ангиотензин, брадикинин), кислые метаболиты, многие лекарственные вещества

способны менять величину электрического потенциала сосудистой стенки, эритроцитов и тромбоцитов, способствуя или препятствуя их адгезии и агрегации. Вырабатываемый эндотелием сосудов простациклин (простагландин X) препятствует адгезии тромбоцитов к сосудистой стенке.

Электровазограмма (измерение трансмурального потенциала сосудистой стенки) меняется при стимуляции симпатического ствола и блуждающего нерва, при введении адренергических и холинергических препаратов, антикоагулянтов и фибринолитиков.


Самосохраняющая функция крови обеспечивается тремя системами: свертывающей (образующей фибрин-тромб), антикоагулянтной (препятствующей возникновению фибринных сгустков и тромба) и фибринолитической (растворяющей уже образовавшиеся сгустки фибрина и тромб).

5. Известны два главных механизма свертывания крови, имеющие различное назначение (рис. 15): 1) сосудисто-тром-боцитарный гемостаз осуществляется главным образом в системе микроциркуляции и предназначен преимущественно для первичной остановки кровотечения из поврежденных сосудов; 2) коагуляционное тромбообразование — ферментативный трехфазный процесс, предназначенный в основном для образования внутрисосудистой фибринной выстилки, но участвующий и в остановке кровотечения, укрепляя тромбоцитарную пробку, причем оба процесса — сосудисто-тромбоцитарный гемостаз (первичный) и ферментативная коагуляция происходят не последовательно, а фактически одновременно.


После предварительных замечаний можно перейти к рассмотрению трех упомянутых выше систем крови – свертывающей, антикоагулянтной и фибринолитической.

Свертывающая система крови. Как уже отмечено, свертывающая система представлена двумя главными механизмами — сосудисто-тромбоцитарным и ферментативно-коагуляционным.

Сосудисто-тромбоцитарный гемостаз начинается как гемостатическая реакция в месте повреждения сосудистой стенки. У раненой интимы с обнаженным коллагеном резко меняется электрический дзета-потенциал, в результате чего к раневой поверхности прилипают заряженные тромбоциты (адгезия). Одновременно начинаются склеивание тромбоцитов между собой (агрегация) и стимуляция ими ферментативной коагуляции.

Рис. 15. Механизмы гемостаза. І – сосудисто-тромбоцитарный гемостаз; II – ферментативная коагуляция.

Puc. 57. Физиологические механизмы септического шокового синдрома.

СПИСОК ЛИТЕРАТУРЫ

- Александров В.Н., Маркин С.А., Антипов А.Б. и др. Гиперосмолярная кома, диагностика и принципы терапии. Анестезиол. и реаниматол., 1978, №4, с. 85–88.
- *Баркаган З.С.* Геморрагические заболевания и синдромы. М.: Медицина, 1980. 336 с.
- *Белоярцев* Φ . Φ . Компоненты общей анестезии. М.: Медицина, 1977. 264 с.
- *Белоярцев* Φ . Φ . Электромиография в анестезиологии. М.: Медицина, 1980. 232 с.
- *Биркун А.А., Нестеров Е.Н., Кобозев Г.В.* Сурфактант легких. Киев: Здоров'я, 1981.-160 с.
- *Бреслав И.С., Глебовский В.Д.* Регуляция дыхания. Л.: Наука, 1981.-280 с.
- *Бунятян А.А., Рябов Г.А., Маневич А.З.* Анестезиология и реаниматология. М.: Медицина, 1977. 432 с.
- *Бунятян А.А., Косенко Р.П., Флеров Е.В. и др.* Электронно-вычислительная техника в анестезиологии. Анестезиол. и реаниматол., 1977, №1, с. 41—44.
- *Бунятян А.А., Трекова Н.А., Шурков В.С. и др.* О мутагенном действии анестетиков. Анестезиол. и реаниматол., 1977, №4, с. 21–24.
- *Бураковский В.И., Бокерия Л.А.* Гипербарическая оксигенация в сердечно-сосудистой хирургии. М.: Медицина, 1974. 333 с.
- Виноградова И.Л., Багрянцева С.Ю., Дервиз Г.В. Доступные для клинических исследований методы определения сродства гемоглобина к кислороду в цельной крови. Пробл. гематол., 1981, №6, с. 26–30.
- Гадалов В.П., Хмелевский Я.М., Ярина А.А. и др. Влияние общей анестезии фторотаном и стресса, обусловленного бронхоскопией, на некоторые показатели иммунитета. Анестезиол. и реаниматол., 1981, №1, с. 13–17.
- Гальперин Э.И., Семендяева М.И., Неклюдова Е.А. Недостаточность печени. М.: Медицина, 1978. 328 с.
- Герасименко Н.И., Приймак А.А., Сегеди С.А. и др. Эндогенная оксигенация перекисью водорода. Вестн. хир., 1978, №7, с. 127–132.

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ

Адреноблокада при стрессовых язвах Антидотная терапия 322 и эрозиях 530 Антикоагуляционная система кро-Азотемия, борьба с ней 479 ви 104 Алкалоз дыхательный при нарушении Антикоагулянты постоянные и обра-KIIIC 179-180 зующиеся 104, 105 метаболический 182 Антитромбин III 104 Аортокавальная компрессия, или по-Алкоголь этиловый 551 Аллергические реакции 560-561 стуральный гипотензивный син-Альбумин 230 дром 338 Альвеолокапиллярная диффузия 61, Апгар шкала 367–368 Апноэ периферическое, центральное Альгометрия и анальгезимеи сочетанное 309 трия 136-137 продленное 306 Анальгезия, методы 142 Атаральгезия 192 -- нейрохирургические 144 Атараксия 191 Аутоанальгезия при болевом синдро-- ненаркотическими анальгетиками 143 ме 144 теория контролируемых ворот 134 после торакальных операций 404 – перидуральная 142 Аутогемотрансфузия 227 применение блокады 143 Ацидоз лактатный 182 Анафилактический шок 562 – метаболический 182 Анафилактоидный, или гистаминопри острой почечной недостаточвый, шок 563 ности 471 Анемия при острой почечной недо-——— септическом шоке 576 статочности 472 Аэрозольная терапия 250, 251 Анестезиологическое пособие 188, при остром стенотическом ларин-189 готрахенте 394 – влияние на дыхание 400 Аспирационные синдромы 343 — в акушерстве 330 профилактика антацидными сред-— мониторизация 327 ствами и домперидоном 347, 348 Анестезия и злокачественный Аспирация и аспирационный синрост 560 дром при спинальном шоке 515 -местная 204 Астма бронхиальная 403 – у детей 364 – сердечная 443 Анестетики, влияние на персонал операционных и отделений ИТАР 560 Беременные, выбор анестезии 331 -- миорелаксанты 318 постуральный гипотензивный син-- местные, методы применения 204 дром 338 эффект гепатотоксический 447 Биопсия мышцы пункционная 503 Антацидная терапия стрессовых язв печени игольчатая 455 и эрозий 530 Блок десенситизирующий 301 Антибактериальная и специфическая мионевральный 300 Блокада ганглионарная при терапия септического шока 578 - терапия острейшего гастроэнтериэклампсии 361 та 539 – парентеральная при торакальных Антибиотики и миорелаксанты 318 операциях 404

– перидуральная 207

Антигипоксические метолы 278