

Руководство по монтажу и эксплуатации

EHC

Данное руководство по эксплуатации содержит принципиальные указания, которые должны выполняться при монтаже, эксплуатации и техническом обслуживании.

Во избежание несчастных случаев и возникновения поломок необходимо внимательно ознакомиться с данным руководством перед началом эксплуатации изделия.

1. Назначение и функциональные возможности

Погружные насосы UNIPUMP серии MINI ECO предназначены для бытового использования и применяются для подачи чистой холодной воды (без абразивных и волокнистых включений) из скважин диаметром не менее 85 мм, глубоких колодцев и открытых водоемов.

Область применения — для автономного водоснабжения индивидуальных

зданий, коттеджей, дачных домов, для организации полива огородов, садовых участков, небольших фермерских хозяйств, наполнения водой малых и средних резервуаров.

Насосы серии MINI ECO **НЕ ПРЕДНАЗНАЧЕНЫ** для перекачивания агрессивных жидкостей, топлива и других химических, и взрывоопасных вешеств.

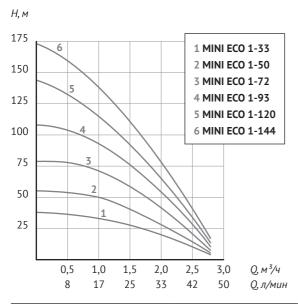
2. Комплект поставки

Наименование	Количество, шт.
Погружной насос с электрокабелем*	1
Руководство по монтажу эксплуатации	1
Упаковка	1

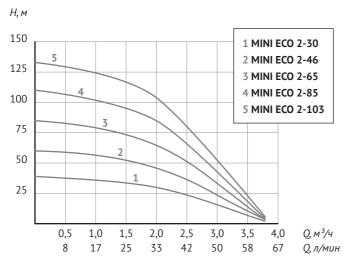
^{*} Примечание: у некоторых моделей насосов двигатель и проточная часть могут поставляться отдельно, в двух тубах (требуется сборка).

3. Технические характеристики и условия эксплуатации

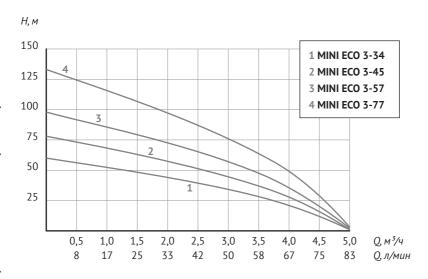
Максимальная глубина погружения под зеркало воды	40 м
Температура перекачиваемой жидкости	0 +35 °C
Температура окружающей среды	+1 +40 °C
Максимально допустимое количество примесей в перекачиваемой жидкости	не более 100 г/м³
рН перекачиваемой жидкости	6,5 8,5
Параметры электросети	~ 220/230 В, 50 Гц
Частота вращения двигателя	2850 об/мин
Встроенная термозащита двигателя, температура срабатывания теплового реле	≈ 120 °C
Степень защиты двигателя	IP68

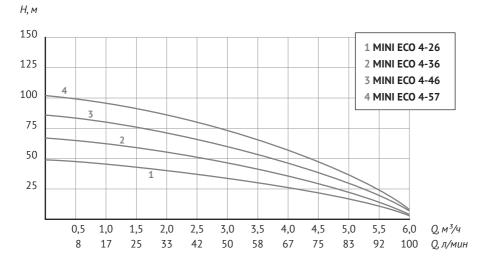

	Модель МІ	NI ECO				
Параметр	1-33	1-50	1-72	1-93	1-120	1-144
Мощность, кВт	0,25	0,37	0,55	0,75	1,1	1,5
Макс. напор, м*	38	55	79	108	144	173
Макс. производительность, м³/ч (л/мин)*			2,8	(47)		
Потребляемый ток, А	2,3	3,0	4,5	5,8	7,7	10,1
Емкость пускового конденсатора, мкФ	12	18	25	30	35	45
Диаметр выходного отверстия дюйм	ı,			1		
Длина электрокабеля, м	10	15	20	30	40	50
Тип, сечение кабеля, мм ²	3×0,5	3×0,5	3×0,75	3×1,0	3×1,0	3×1,5
Габаритные размеры (макс. диаметр/длина), мм	Ø75x815	Ø75×990	Ø75×1220	Ø75×1460	Ø75×1770	Ø75×2021

Попольно	Модель MIN	VI ECO			
Параметр	2-30	2-46	2-65	2-85	2-103
Мощность, кВт	0,37	0,55	0,75	1,1	1,5
Макс. напор, м*	39	60	85	110	133
Макс. производительность, м³/ч (л/мин)*			3,8 (63)		
Потребляемый ток, А	3,0	4,5	5,8	7,7	10,1
Емкость пускового конденсатора, мкФ	18	25	30	35	45
Диаметр выходного отверстия, дюйм			1		
Длина электрокабеля, м	15	20	30	40	50
Тип, сечение кабеля, мм²	3×0,5	3×0,75	3×1,0	3×1,0	3×1,5
Габаритные размеры (макс. диаметр/длина), мм	Ø75×900	Ø75×1125	Ø75×1390	Ø75×1675	Ø75×1950


	Модель MINI ECO						
Параметр	3-34	3-45	3-57	3-77			
Мощность, кВт	0,55	0,75	1,1	1,5			
Макс. напор, м*	60	78	98	133			
Макс. производительность, м³/ч (л/мин)*		[5 (83)				
Потребляемый ток, А	4,5	5,8	7,7	10,1			
Емкость пускового конденсатора, мкФ	25	30	35	45			
Диаметр выходного отверстия, дюйм			11/4				
Длина электрокабеля, м	20	30	40	50			
Тип, сечение кабеля, мм²	3×0,75	3×1,0	3×1,0	3×1,5			
Габаритные размеры (макс. диаметр/длина), мм	Ø75×1240	Ø75×1485	Ø75×1723	Ø75×2143			

Петет	Модель MINI	ECO		
Параметр	4-26	4-36	4-46	4-57
Мощность, кВт	0,55	0,75	1,1	1,5
Макс. напор, м*	49	67	86	102
Макс. производительность, м³/ч (л/мин)*		6	(100)	
Потребляемый ток, А	4,5	5,8	7,7	10,1
Емкость пускового конденсатора, мкФ	25	30	35	45
Диаметр выходного отверстия, дюйм			11/4	
Длина электрокабеля, м	20	30	40	50
Тип, сечение кабеля, мм²	3×0,75	3×1,0	3×1,0	3×1,5
Габаритные размеры (макс. диаметр/длина), мм	Ø75×1179	Ø75×1400	Ø75×1691	Ø75×1884


4. Напорно-расходные характеристики*


	Производительность								
Модель	Q, л/мин	0	8	17	25	30	33	42	47
	Q, м³/ч	0	0,5	1	1,5	1,8	2	2,5	2,8
MINI ECO 1-33		38	36	33	28	23	20	10	4
MINI ECO 1-50	Σ	55	54	50	40	34	29	14	5
MINI ECO 1-72	E	79	78	72	58	50	42	20	7
MINI ECO 1-93	Напор	108	105	93	76	64	57	27	10
MINI ECO 1-120	На	144	132	120	91	76	60	36	13
MINI ECO 1-144	•	173	158	144	109	91	72	43	16

	Производительность									
Модель	Q, л/мин	0	8	17	25	30	33	42	50	63
	Q, m ³ /4	0	0,5	1	1,5	1,8	2	2,5	3	3,8
MINI ECO 2-30	Σ	39	37	36	34	32	30	24	15	2
MINI ECO 2-46	(H),	60	58	56	52	49	46	37	23	3
MINI ECO 2-65		85	82	79	74	70	65	52	33	3
MINI ECO 2-85	Напор	110	107	101	95	90	85	67	42	4
MINI ECO 2-103		133	130	126	115	109	103	81	51	5

	Производ	ительн	юсть							
Модель	Q, л/мин	0	17	25	33	42	50	60	67	83
	Q, m ³ /4	0	1	1,5	2	2,5	3	3,5	4	5
MINI ECO 3-34	ž	60	51	48	44	40	34	29	22	1
MINI ECO 3-45	(£)	78	66	62	58	51	45	38	30	1
MINI ECO 3-57	: : Напор	98	84	78	72	65	57	48	38	2
MINI ECO 3-77	На	133	114	106	98	88	77	65	52	3

	Производ	ительн	ость						
Модель	Q, л/мин	0	17	33	50	67	83	100	
	Q, m ³ /4	0	1	2	3	4	5	6	
MINI ECO 4-26	ž	49	46	40	33	26	18	3	
MINI ECO 4-36	\mathcal{E}	67	63	55	45	36	24	4	
MINI ECO 4-46	dou	86	81	70	59	46	32	7	
MINI ECO 4-57	모	102	98	84	71	57	39	8	

^{*} Приведенные данные по максимальному напору и максимальной производительности справедливы при напряжении электросети 220 В.

5. Устройство насоса

Насос (рис. 1) состоит из электродвигателя (1) и проточной части (2). Корпус насоса выполнен из нержавеющей стали. Проточная часть — центробежного типа. Рабочие колеса — «плавающие», выполнены из высокопрочного, износоустойчивого поликарбоната, обеспечивают продолжительный срок службы проточной части и уменьшают вероятность заклинивания при перекачивании воды с механическими примесями. Насос оборудован встроенным обратным клапаном.

Электродвигатель — однофазный, маслонаполненный, со встроенным пусковым конденсатором, тепловой защитой и электрокабелем. Тепловая защита срабатывает при перегрузке насоса. После достаточного охлаждения (примерно 30 минут) электродвигатель включается автоматически.

Вода поступает в насос через фильтрующую решетку (3), расположенную в средней части насоса. На выходном латунном патрубке (4) имеются проушины (5) для крепления троса при монтаже насоса в скважину.

На корпус насоса нанесен серийный номер, первые четыре цифры которого обозначают год и месяц его изготовления (ГГММ...).

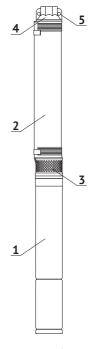


Рис. 1

6. Меры безопасности

- Запрещается эксплуатация насоса без заземления;
- Запрещается перекачивать насосом воспламеняющиеся и взрывоопасные жидкости;
- Насос необходимо включить через устройство защитного отключения с током срабатывания не более 30 мА;
- Монтаж насоса, ввод его в эксплуатацию и техническое обслуживание должно осуществляться квалифицированным персоналом в строгом соответствии с «Правилами технической эксплуатации электроустановок потребителей» и «Правилами техники безопасности при эксплуатации

- электроустановок потребителей» (ПТЭ и ПТБ);
- Перед началом проведения любых работ с насосом необходимо убедиться, что электропитание отключено и приняты все меры, чтобы исключить его случайное включение;
- Категорически запрещается опускать, поднимать и подвешивать насос за электрокабель;
- При использовании насоса в открытом водоеме, не допускается присутствие людей и животных;
- Разборка и ремонт насоса должны осуществляться только специалистами сервисной службы.

 Категорически запрещена эксплуатация насоса с поврежденным электрокабелем. При повреждении электрического кабеля, во избежание опасности, его должен заменить изготовитель, уполномоченный им сервисный центр или аналогичное квалифицированное лицо.

7. Монтаж и ввод в эксплуатацию

ВНИМАНИЕ!

Категорически запрещена работа насоса без воды! Включать и выключать насос допускается только после его погружения в перекачиваемую жидкость.

Перед началом монтажных работ проверьте соответствие электрических и напорных данных изделия параметрам Вашей электрической и водонапорной сети, а также произведите визуальный осмотр насоса и убедитесь, что отсутствуют механические повреждения корпуса и электрокабеля.

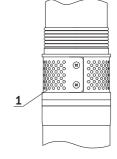
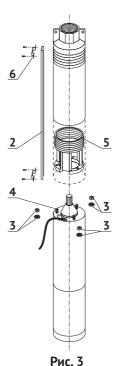



Рис. 2

7.1. Соединение проточной части и электродвигателя

Если проточная часть и двигатель поставляются отдельно, необходимо выполнить следующие действия:

- 1. Открутив винты, снимите с проточной части фильтрующую решетку (1), затем защитную кабельную планку (2) (рис. 2, 3);
- 2. Демонтируйте пружинные шайбы и гайки (3) с крепежных шпилек электродвигателя (4);
- Установите двигатель насоса в вертикальном положении;
- Состыкуйте вал двигателя с адаптером проточной части (5) при помощи шпилек таким образом, чтобы электрокабель разместился в специальном пазу.
 Убедитесь в том, что соединение выполнено без перекосов по вертикальной оси;
- Установите пружинные шайбы на шпильки двигателя и закрутите гайки в перекрестном направлении;
- Ровно уложите электрокабель вдоль корпуса проточной части, расположите поверх него защитную планку (2) и закрепите ее хомутами (6);
- 7. Установите на адаптер проточной части фильтрующую решетку и зафиксируйте винтами.

7.2. Электроподключение

ВНИМАНИЕ!

Электроподключение следует выполнять только после окончательного выполнения всех гидравлических соединений. Перед проведением любых работ убедитесь, что электропитание отключено и приняты все меры, чтобы исключить его случайное включение.

Насосы поставляются в комплекте с трёхжильным электрическим кабелем с вилкой, длиной от 10 до 50 м в зависимости от мощности насоса (см. раздел «Технические характеристики») и подключаются непосредственно в электрическую розетку. Розетка должна использоваться только для питания насоса и быть подключена к дифференциальному автоматическому выключателю высокой чувствительности (30 мА).

Место установки розетки должно быть защищено от брызг воды и воздействия атмосферных осадков.

При необходимости кабель можно удлинить. Для удлинения необходимо использовать трёхжильный водозащищенный кабель. Сечение кабеля необходимо подбирать в зависимости от необходимой длины и мощности электродвигателя насоса, руководствуясь следующей таблицей:

Мощность		Сечение кабеля, мм						
Мощность двигателя, кВт		1,5	2,5	4	6	10	16	
0,37	, м	85	144	_	_	-	_	
0,55	беля	64	107	140	_	-	_	
0,75	кас	49	83	110	165	-	_	
1,1	пна	32	54	80	120	195	_	
1,5	4	25	35	60	95	153	245	

ВНИМАНИЕ!

Для надежной электрической изоляции жил кабеля следует использовать специальные водозащитные термоусадочные муфты.

7.3. Установка насоса

Насос может быть установлен только в вертикальном положении. В процессе эксплуатации часть насоса, где расположена всасывающая полость, должна быть полностью погружена в воду.

Присоедините напорную магистраль к выходному патрубку насоса.

В качестве водоподъемных труб используют стальные трубы или трубы из полимерных материалов, диаметром не менее диаметра выходного отверстия насоса. Трубы должны выдерживать давление в 1,5 раза больше, чем давление, создаваемое насосом.

ВНИМАНИЕ!

Все соединения трубопроводов всасывающей и напорной магистралей должны быть выполнены герметично.

При работе насоса в системе автоматического водоснабжения, на выходе насоса необходимо установить дополнительный обратный клапан (в комплект поставки не входит).

Электрокабель крепится к напорному трубопроводу при помощи хомутов с небольшим провисанием, расстояние между крепежами не должно превышать двух метров.

Перед погружением насоса в скважину следует убедиться в том, что обсадная труба не имеет местных сужений и искривлений, и, что ее внутренний диаметр больше максимального внешнего диаметра погружного насоса, с учётом размера защитной планки электрокабеля.

Насос следует опускать в скважину только на тросе из стали или нейлона, закрепленном в проушинах насоса. Крепежный трос не должен быть нагружен, но в то же время не должен провисать. Категорически запрещается подвешивать насос за электрокабель. После погружения насоса в скважину следует надежно закрепить трос на поверхности.

Насос должен быть установлен на расстоянии не менее 1,5 м от дна скважины (рис. 4). Расстояние между глубиной погружения насоса и динамическим уровнем воды в источнике должно быть не менее 3 м.

Максимальная глубина погружения насоса от зеркала воды — 40 м.

7.4. Ввод в эксплуатацию

После того, как произведено подключение насоса к электросети и насос опущен в воду, можно производить пробный пуск.

При первом пуске насоса в новой скважине необходимо учесть возможность захвата больших объемов загрязнений. Поэтому при подаче насосом сильно загрязненной воды

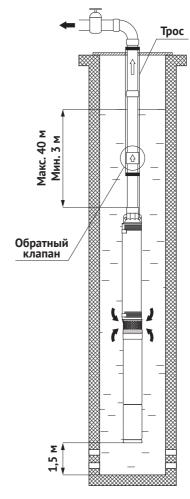


Рис. 4

категорически запрещается выключать насос до того момента, пока из трубопровода не пойдет чистая вода.

После проведения пробного пуска, необходимо проверить, на сколько снизился уровень воды в скважине и убедиться в том, что насос остается в погруженном состоянии.

В случае, если насос при своей

максимальной производительности нагнетает больший объем воды, чем производительность скважины, необходимо применить систему защиты от работы без воды, в противном случае это может привести к выходу насоса из строя.

Не допускается работа насоса при закрытой напорной линии, так как при этом возникает опасность перегрева двигателя.

8. Техническое обслуживание

В процессе эксплуатации насос не требует технического обслуживания.

9. Правила хранения и транспортировки

Если насос был в эксплуатации, то перед длительным хранением его следует промыть в чистой воде, слить остатки воды и просушить. Насос следует хранить при температуре от +1 до +35 °C, вдали от нагревательных приборов, избегая попадания на него прямых солнечных лучей. Транспортировка насосов, упакованных в тару, осуществляется

крытым транспортом любого вида, обеспечивающим сохранность насосов, в соответствии с правилами перевозок грузов, действующими на данном виде транспорта.

При транспортировке должна быть исключена возможность перемещения насосов внутри транспортных средств.

10. Утилизация

Изделие не должно быть утилизировано вместе с бытовыми отходами. Возможные способы утилизации данного оборудования необходимо узнать у местных коммунальных служб. Упаковка изделия выполнена из картона и может быть повторно переработана.

11. Возможные неисправности и способы их устранения

Неисправность	Возможные причины	Способы устранения			
Насос не включается	Нет напряжения в электросети, неисправность контактов	Проверьте электропроводку			
	Низкое напряжение электросети	Установите стабилизатор напряжения			
	Двигатель насоса неисправен	Обратитесь в сервисный центр			
Насос работает, но не подает воду	Водозаборная часть насоса не погружена в воду	Проверьте глубину погружения насоса			
	Напорный трубопровод слишком длинный, или на нем слишком много изгибов	Проверьте напорный трубопровод, убедитесь в том, что условия эксплуатации соответствуют напорным характеристикам насоса			
	Разгерметизация напорного трубопровода	Проверьте все соединения напорного трубопровода на герметичность			
	Рабочие колеса насоса заблокированы механическими примесями	Обратитесь в сервисный центр			
Насос работает с пониженным напором	Низкое напряжение электросети	Установите стабилизатор напряжения			
ипроизводительностью	Понижение динамического уровня воды в источнике	Увеличьте глубину погружения насоса			
	Частично забит механическими примесями насос, трубопровод или встроенный обратный клапан	Поднимите насос на поверхность, демонтируйте и промойте насос, трубопровод, обратный клапан			
	Разгерметизация трубопровода	Проверьте герметичность всех соеди- нений трубопровода			
	Износ рабочих колес	Обратитесь в сервисный центр			
Тепловое реле отклю- чает насос	Напряжение электросети не соответствует номинальному	Установите стабилизатор напряжения			
	Насос работает без воды	Проверьте глубину погружения насоса, убедитесь в том, что водопри- ток скважины или колодца достато- чен для нормальной работы насоса			
	Вал насоса не вращается из-за блокировки рабочих колес	Обратитесь в сервисный центр			

12. Гарантийные обязательства

Изготовитель несет гарантийные обязательства в течение 24 (двадцати четырех) месяцев от даты продажи насоса через розничную сеть.

Срок службы изделия составляет 5 (пять) лет с момента начала эксплуатации.

В течение гарантийного срока изготовитель бесплатно устраняет дефекты,

возникшие по вине производителя, или производит обмен изделия при условии соблюдения потребителем правил эксплуатации.

Гарантия не предусматривает возмещения материального ущерба или травм, возникших в результате неправильного монтажа и эксплуатации.

ВНИМАНИЕ!

Гарантийные обязательства не распространяются:

- на неисправности, возникшие в результате несоблюдения потребителем требований настоящего руководства по монтажу и эксплуатации;
- на механические повреждения, вызванные внешним ударным воздействием, небрежным обращением, либо воздействием отрицательных температур окружающей среды;
- на насосы, подвергшиеся самостоятельной разборке, ремонту или модификации;
- на неисправности, возникшие в результате перегрузки насоса

К безусловным признакам перегрузки относятся: деформация или следы оплавления деталей и узлов изделия, потемнение и обугливание обмотки статора электродвигателя, появление цветов побежалости на деталях и узлах насоса, сильное внешнее и внутреннее загрязнение;

 на ремонт, потребность в котором возникает вследствие нормального, естественного износа, сокращающего срок службы частей и оборудования, и в случае полной выработки его ресурса.

Гарантия не действует без предъявления заполненного гарантийного талона.