

# 4/4 directional control valves, direct operated, with electrical position feedback and integrated electronics (OBE)

# Type 4WRPEH

**RE 29121** www.hydrootvet.ru



### ► Size 6

- Component series 3X
- Maximum operating pressure 350 bar
- ► Rated flow 4...40 l/min (**Δp** = 70 bar)

CE

# Features

- Reliable proven and robust design
- Safe fail-safe position of the control spool in switchedoff condition
- Energy-efficient no pilot oil demand
- ► High quality control spool and sleeve in servo quality
- Flexible suitable for position, velocity and pressure control
- Precise high response sensitivity and little hysteresis

# Contents

| Features                                | 1    |
|-----------------------------------------|------|
| Ordering code                           | 2, 3 |
| Symbols                                 | 3    |
| Function, section                       | 4    |
| Technical data                          | 5,6  |
| Block diagram/controller function block | 7    |
| Electrical connections, assignment      | 7    |
| Characteristic curves                   | 8 10 |
| Dimensions                              | 11   |
| Accessories, additional information     | 12   |

# Ordering code

| 01 | 02  | 03 | 04 | 05 | 06 | 07 | 08 | 09 |   | 10 |   | 11 |   | 12 | 13 | 14 |
|----|-----|----|----|----|----|----|----|----|---|----|---|----|---|----|----|----|
| 4  | WRP | Е  | Н  | 6  |    | В  |    |    | - | 3X | / |    | / | 24 |    | *  |

| 01 | 4 main ports                         | 4   |
|----|--------------------------------------|-----|
| 02 | High-response valve, direct operated | WRP |
| 03 | With integrated electronics          | E   |
| 04 | Control spool/sleeve                 | Н   |
| 05 | Size 6                               | 6   |

#### **Control spool symbols**

| 06 | Symbol                                                                                          | Flow characteristics L                   | Flow characteristics P |                         |  |  |  |
|----|-------------------------------------------------------------------------------------------------|------------------------------------------|------------------------|-------------------------|--|--|--|
|    | $\begin{array}{c c} A_1 B_1 \\ \hline \\ a & 0 \\ \end{array} \\ P^1 T^1 \\ \hline \end{array}$ |                                          |                        |                         |  |  |  |
|    |                                                                                                 | •                                        | •                      | С                       |  |  |  |
|    |                                                                                                 | •                                        | •                      | <b>C1</b> <sup>1)</sup> |  |  |  |
|    |                                                                                                 | ٠                                        | •                      | C4                      |  |  |  |
|    |                                                                                                 | •                                        | •                      | С3                      |  |  |  |
|    |                                                                                                 | •                                        | •                      | <b>C5</b> <sup>1)</sup> |  |  |  |
|    | <sup>1)</sup> With symbols C1 and C5:                                                           |                                          |                        |                         |  |  |  |
|    | P → A: <b>q</b> <sub>Vnom</sub>                                                                 | $B \rightarrow T: q_{Vnom}/2$            |                        |                         |  |  |  |
|    | $P \rightarrow B: \boldsymbol{q}_{Vnom}/2$                                                      | $A \rightarrow T: \boldsymbol{q}_{Vnom}$ |                        |                         |  |  |  |
|    | <b>q</b> <sub>Vnom</sub> 2:1 only with                                                          | rated flow = 40 l/min                    |                        |                         |  |  |  |
| 07 | 07 Installation side of the inductive position transducer                                       |                                          |                        |                         |  |  |  |

#### Rated flow of size 6 with 70 bar valve pressure differential (35 bar/control edge)

|    |          | Flow characteristics L | Flow characteristics P                   |    |
|----|----------|------------------------|------------------------------------------|----|
| 08 | 04 l/min | •                      | • (inflection at 40 %)                   | 04 |
|    | 12 l/min | •                      |                                          | 12 |
|    | 15 l/min |                        | • (inflection at 60 %)                   | 15 |
|    | 24 l/min | •                      |                                          | 24 |
|    | 25 l/min |                        | • (inflection at 60 %)                   | 25 |
|    | 40 l/min | •                      | <ul> <li>(inflection at 40 %)</li> </ul> | 40 |

• = Delivery range

#### Flow characteristics

| 09 | Linear                                                                           | L  |
|----|----------------------------------------------------------------------------------|----|
|    | Inflected characteristic curve, linear                                           | Р  |
|    |                                                                                  |    |
| 10 | Component series 30 39 (30 39: Unchanged installation and connection dimensions) | 3X |
|    |                                                                                  |    |

#### Seal material

| 11 | NBR seals | М |
|----|-----------|---|
|    | FKM seals | v |

# Ordering code

| 01 | 02  | 03 | 04 | 05 | 06 | 07 | 08 | 09 |   | 10 |   | 11 |   | 12 | 13 | 14 |
|----|-----|----|----|----|----|----|----|----|---|----|---|----|---|----|----|----|
| 4  | WRP | Е  | Н  | 6  |    | В  |    |    | - | 3X | / |    | / | 24 |    | *  |

| 12    | Supply voltage of the integrated electronics: 24 VDC | 24 |
|-------|------------------------------------------------------|----|
| Inter | faces of the control electronics                     |    |
| 13    | Command value input ±10 V                            | A1 |
|       | Command value input 4 20 mA                          | F1 |
|       |                                                      |    |
| 14    | Further details in the plain text                    |    |

# Symbols

|     | Linear        | P: Inflection 60 %<br>[ <b>q</b> <sub>Vnom</sub> = 15.25 l/min] | P: Inflection 40 % |
|-----|---------------|-----------------------------------------------------------------|--------------------|
|     | QA<br>        | Q<br>A<br>As                                                    | Q                  |
| C C |               |                                                                 |                    |
|     | Standard = 1: | 1, <b>q</b> <sub>Vnom</sub> 2:1 only with rated fl              | ow = 40 l/min      |

### **Function**, section

### Set-up

The 4WRPEH high-response valve mainly consists of:

- Valve housing with control spool and sleeve in
- servo quality (1)Control solenoid with position transducer (2)
- ► On-board electronics (OBE) (3) with analog interface (4)

#### **Functional description**

The 4WRPEH is a direct operated directional control valve with electrical position feedback and integrated electronics (OBE). The integrated electronics (OBE) compares the specified command value to the actual position value. In case of control deviations, the stroke solenoid will be activated. Due to the changed magnetic force, the control spool is adjusted against the spring. Stroke/control spool cross-section is controlled proportionally to the command value. In case of a command value presetting of 0 V, the electronics adjusts the control spool against the spring to central position. In deactivated condition, the spring is untensioned to a maximum and the valve is in fail-safe position.

#### Failure of supply voltage

If the supply voltage fails or if the minimum supply voltage is no longer achieved as well as in case of cable break, the integrated electronics will de-energize the control solenoid, the control spool will take the fail-safe position.



# Technical data

(For applications outside these parameters, please consult us!)

| Spool valve, direct operated, with steel sleeve               |
|---------------------------------------------------------------|
| Proportional solenoid with position control, OBE              |
| Subplate mounting, porting pattern according to ISO 4401      |
| Any                                                           |
| -20 +60                                                       |
| +10 +40                                                       |
| -30 +80                                                       |
| 102000 Hz / maximum of 10 g / 10 cycles / 3 axes              |
| 202000 Hz / 10 g <sub>RMS</sub> / 30 g peak / 30 min / 3 axes |
| 15g / 11 ms / 3 axes                                          |
| 2.9                                                           |
| 95                                                            |
| 150                                                           |
| 150 (for further details see data sheet 08012)                |
|                                                               |

| hydraulic                                       |                                                           |                   |                     |
|-------------------------------------------------|-----------------------------------------------------------|-------------------|---------------------|
| Hydraulic fluid                                 |                                                           |                   | See table on page 6 |
| Viscosity range                                 | - recommended                                             | mm²/s             | 20 100              |
|                                                 | – maximum admissible                                      | mm²/s             | 10 800              |
| Hydraulic fluid temper                          | ature range (flown-through)                               | °C                | -20 +70             |
| Maximum admissible c<br>cleanliness class accor | egree of contamination of the hyd<br>ding to ISO 4406 (c) | Class 18/16/13 1) |                     |

| Rated flow at <b><i>Ap</i></b> = 35 bar                                         | r per edge <sup>2)</sup>           | l/min                | 4     | 12    | 15    | 24/25 | 40    |
|---------------------------------------------------------------------------------|------------------------------------|----------------------|-------|-------|-------|-------|-------|
| Maximum operating                                                               | – Ports A, B, P                    | bar                  | 350   |       |       |       |       |
| pressure                                                                        | – Port T                           | bar                  | 250   |       |       |       |       |
| Limitation of use with                                                          | – Spool symbols C3, C5, C          | bar                  | 350   | 350   | 350   | 350   | 160   |
| regard to the transition<br>to failsafe<br>(values apply to sum-<br>mated edge) | – Spool symbols C1, C4             | bar                  | 350   | 350   | 280   | 250   | 100   |
| Leakage flow at 100 bar                                                         | – Linear characteristic curve L    | cm³/min              | < 180 | < 300 | -     | < 500 | < 900 |
|                                                                                 | - Inflected characteristic curve P | cm <sup>3</sup> /min | < 150 | -     | < 180 | < 300 | < 450 |

| static/dynamic                                    |           |                                                    |
|---------------------------------------------------|-----------|----------------------------------------------------|
| Hysteresis                                        | %         | < 0.1                                              |
| Range of inversion                                | %         | < 0.05                                             |
| Response sensitivity                              | %         | < 0.05                                             |
| Manufacturing tolerance <b>q</b> <sub>Vmax</sub>  | %         | < 10                                               |
| Temperature drift (temperature range 20 °C 80 °C) |           | Zero shift < 0.25 % with $\Delta \vartheta$ = 10 K |
| Pressure drift                                    | %/100 bar | Zero shift < 0.15                                  |
| Zero compensation                                 |           | Ex factory ±1 %                                    |

 The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. Flow with different *Ap*:

$$\boldsymbol{q}_{x} = \boldsymbol{q}_{Vnom} \cdot \sqrt{\frac{\boldsymbol{\Delta}\boldsymbol{p}_{x}}{35}}$$

For the selection of the filters see www.boschrexroth.com/filter.

## **Technical data**

(For applications outside these parameters, please consult us!)

|                      | Classification                                                                                      | Suitable sealing materials                                                                                                                                                                                 | Standards                                                                                                                                                                                                                                                                                                                           |
|----------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ed hydrocarbons      | HL, HLP, HLPD, HVLP, HVLPD                                                                          | NBR, FKM                                                                                                                                                                                                   | DIN 51524                                                                                                                                                                                                                                                                                                                           |
| – insoluble in water | HETG                                                                                                | NBR, FKM                                                                                                                                                                                                   | ISO 15380                                                                                                                                                                                                                                                                                                                           |
|                      | HEES                                                                                                | FKM                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                     |
| - soluble in water   | HEPG                                                                                                | FKM                                                                                                                                                                                                        | ISO 15380                                                                                                                                                                                                                                                                                                                           |
| – water-free         | HFDU, HFDR                                                                                          | FKM                                                                                                                                                                                                        | ISO 12922                                                                                                                                                                                                                                                                                                                           |
| - containing water   | HFC (Fuchs HYDROTHERM 46M,<br>Petrofer Ultra Safe 620)                                              | NBR                                                                                                                                                                                                        | ISO 12922                                                                                                                                                                                                                                                                                                                           |
|                      | ed hydrocarbons<br>- insoluble in water<br>- soluble in water<br>- water-free<br>- containing water | ed hydrocarbons HL, HLP, HLPD, HVLP, HVLPD<br>- insoluble in water HETG<br>- soluble in water HEPG<br>- water-free HFDU, HFDR<br>- containing water HFC (Fuchs HYDROTHERM 46M,<br>Petrofer Ultra Safe 620) | ed hydrocarbons     HL, HLP, HLPD, HVLP, HVLPD     NBR, FKM       - insoluble in water     HETG     NBR, FKM       - soluble in water     HEES     FKM       - soluble in water     HEPG     FKM       - water-free     HFDU, HFDR     FKM       - containing water     HFC (Fuchs HYDROTHERM 46M, Petrofer Ultra Safe 620)     NBR |

#### Important information on hydraulic fluids!

- There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.)!
- ► The flash point of the hydraulic fluid used must be 40 K higher than the maximum solenoid surface temperature.

#### ► Mineral oils and related hydrocarbons:

- If mineral oils and related hydrocarbons are used, data sheet 90220 must be complied with!

#### Flame-resistant – water-free:

 If flame-resistant, water-free hydraulic fluids are used, data sheet 90222 must be complied with!

Flame-resistant – containing water: The maximum pressure differential per control edge is 50 bar. Pressure pre-loading at the tank port > 20 % of the pressure differential; otherwise, increased cavitation. Life cycle as compared to operation with mineral oil HL, HLP 50 % to 100 %.

#### Bio-degradable:

 If bio-degradable hydraulic fluids are used, data sheet 90221 must be complied with!

| electrical, integrated electronics (OBE)               |                                                                                                |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Relative duty cycle (%)                                | 100 (continuous operation)                                                                     |
| Protection class according to EN 60529                 | IP 65 with mounted and locked plug-in connectors                                               |
| Supply voltage                                         | 24 V=                                                                                          |
| Terminal A:                                            | At least 19 V=/maximum 36 V=                                                                   |
| Terminal B:                                            | 0 V                                                                                            |
| Maximum admissible residual ripple                     | 2.5 Vpp                                                                                        |
| Maximum power consumption                              | 40 VA                                                                                          |
| Fuse protection, external                              | 2.5 A <sub>T</sub>                                                                             |
| Input, version A1                                      | Differential amplifier, $\boldsymbol{R}_{i}$ = 100 k $\Omega$                                  |
| Terminal D: <b>U</b> E                                 | 0 ±10 V                                                                                        |
| Terminal E:                                            | 0 V                                                                                            |
| Input, version <b>F1</b>                               | Load, <b>R</b> <sub>sh</sub> = 200 Ω                                                           |
| Terminal D: I <sub>D-E</sub>                           | 4 (12) 20 mA                                                                                   |
| Terminal E: I <sub>D·E</sub>                           | Current loop I <sub>D-E</sub> feedback                                                         |
| Maximum voltage of the differential inputs against 0 V | $ \left[ \begin{array}{c} D \to B \\ E \to B \end{array} \right] $ Maximum 18 V                |
| Test signal, version A1                                | LVDT                                                                                           |
| Terminal F: <b>U</b> <sub>test</sub>                   | 0 ±10 V                                                                                        |
| Terminal C:                                            | Reference 0 V                                                                                  |
| Test signal, version <b>F1</b>                         | LVDT signal 4 20 mA at external load 200 500 $\Omega$ maximum                                  |
| Terminal F: I <sub>F-C</sub>                           | 4 20 mA output                                                                                 |
| Terminal C: I <sub>F-C</sub>                           | Current loop I <sub>F-C</sub> feedback                                                         |
| Functional earth and screening                         | See pin assignment (CE-compliant installation)                                                 |
| Adjustment                                             | Calibrated in the factory, see valve characteristic curve                                      |
| Conformity                                             | CE according to EMC Directive 2004/108/EC<br>Tested according to EN 61000-6-2 and EN 61000-6-3 |

# Block diagram/controller function block



<sup>2)</sup> Applies only to F1 interface

3) Output stage current-controlled

<sup>4)</sup> Calibrated in the factory

# **Electrical connections and assignment**

#### **Connector pin assignment**

| Pin | Signal                           | Assignment interface A1 Assignment interface F             |                          |  |
|-----|----------------------------------|------------------------------------------------------------|--------------------------|--|
| Α   | Supply voltage                   | 24 VDC                                                     |                          |  |
| В   | Supply voltage                   | 0 V                                                        |                          |  |
| С   | Reference potential actual value | Reference potential actual value - pin F                   |                          |  |
| D   | Differential emplifier input     | Command value ±10 V                                        | Command value 4 to 20 mA |  |
| E   | Differential amplifier input     | Reference potential command value - pin D                  |                          |  |
| F   | Measuring output (actual value)  | Actual value ±10 V                                         | Actual value 4 to 20 mA  |  |
| PE  |                                  | Functional earth (directly connected to the valve housing) |                          |  |

Command value: Positive command value (0 to 10 V or 12 to 20 mA) at D and reference potential at E result in flow from  $P \rightarrow A$  and  $B \rightarrow T$ .

> Negative command value (0 to -10 V or 12 to 4 mA) at D and reference potential at E result in flow from  $P \rightarrow B$  and  $A \rightarrow T$ .



**Connection cables:** Recommendation: - up to 20 m cable length type LiYCY 7 x 0.75 mm<sup>2</sup> - up to 40 m cable length type LiYCY 7 x 1.0 mm<sup>2</sup> Only connect the screening to PE on the supply side.

> www.hydrootvet.ru RE 29121, edition: 2014-01, Bosch Rexroth AG

### **Characteristic curves**

(measured with HLP46, **9**<sub>oil</sub> = 40 ±5 °C)

#### Flow/signal function

#### L: Linear





P: Inflection 40 %



|        |           | — Fail-safe position       |                                                                               |                    |                   |                         |
|--------|-----------|----------------------------|-------------------------------------------------------------------------------|--------------------|-------------------|-------------------------|
| C3, C5 | ALIB      |                            | Leakage flow at                                                               | 100 bar            | $P \to A$         | 50 cm³/min              |
|        |           |                            |                                                                               |                    | P → B             | 70 cm³/min              |
|        |           | <u>I↓</u> ŢŢI⊲IÞ           | Flow at                                                                       | <b>∆p</b> = 35 bar | $A \to T$         | 10 20 l/min             |
|        | PI IT     |                            |                                                                               |                    | $B \rightarrow T$ | 7 20 l/min              |
| C4, C1 | AL IB     | 50                         | Leakage flow at                                                               | 100 bar            | $P \to A$         | 50 cm³/min              |
|        |           |                            |                                                                               |                    | $P \to B$         | 70 cm³/min              |
|        | WITTIAN   | <u>I</u> ↓∏∕I⊴IÞ           |                                                                               |                    | $A \to T$         | 70 cm <sup>3</sup> /min |
|        | PI IT     |                            |                                                                               |                    | $B \rightarrow T$ | 50 cm³/min              |
|        | Fail-safe | <b>p</b> = 0 bar ⇒ 7 ms    | Internal shut-off in cas                                                      | e of error         |                   |                         |
|        |           | <b>p</b> = 100 bar ⇒ 10 ms | $\boldsymbol{U}_{\text{B}} \leq 17.5 \text{ V and/or } \boldsymbol{I} \leq 2$ | 2 mA               |                   |                         |

## **Characteristic curves**

(measured with HLP46, **9**<sub>oil</sub> = 40 ±5 °C)

### Pressure/signal characteristic curve



#### Transition function with stepped electric input signals



### Characteristic curves

(measured with HLP46, **9**<sub>oil</sub> = 40 ±5 °C)

#### Frequency response characteristic curves



Flow/load function with maximum valve opening



# **Dimensions** (dimensions in mm)





- 1 Valve housing
- 2 Integrated electronics
- **3** O-rings Ø 9.25 x 1.78 (ports P, A, B, T)
- **4** Mating connector not included in the scope of delivery, see data sheet 08008 (separate order)
- 5 Space required to remove the mating connector
- 6 Control solenoid with position transducer
- 7 Machined valve contact surface, porting pattern according to ISO 4401-03-02-0-05 Deviating from the standard: Ports P, A, B, T Ø 8 mm Ferrous metal 1.5 x Ø Minimum screw-in depth:

# Non-ferrous 2 x Ø

## Notice!

The dimensions are nominal dimensions which are subject to tolerances.

www.hydrootvet.ru RE 29121, edition: 2014-01, Bosch Rexroth AG

# Dimensions

| Hexagon socket head cap screws |                                                                                                                                                                  | Material number |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Size 6                         | 4x ISO 4762 - M5 x 30 - 10.9-flZn-240h-L<br>Tightening torque $M_A$ = 7 Nm ±10 %<br>or<br>4x ISO 4762 - M5 x 30 - 10.9<br>Tightening torque $M_A$ = 8.9 Nm ±10 % | R913000316      |

Notice: The tightening torque of the hexagon socket head cap screws refers to maximum operating pressure.

| Subplates | Data sheet | Material number |
|-----------|------------|-----------------|
| Size 6    | 45052      |                 |

### Accessories (not included in the scope of delivery)

| Mating connectors                                          | Data sheet | Material number                                      |
|------------------------------------------------------------|------------|------------------------------------------------------|
| Mating connector for high-response valve DIN EN 175201-804 | 08006      | e.g. R900021267 (plastic)<br>e.g. R900223890 (metal) |
|                                                            |            |                                                      |
|                                                            |            |                                                      |
| Test and service devices                                   | Data sheet | Material number                                      |

# Project planning / maintenance instructions / additional information

- ▶ General operating instructions: Hydraulic valves for industrial applications, see data sheet 07600-B
- ▶ Assembly, commissioning and maintenance of hydraulic systems, see data sheet 07900
- ► Assembly, commissioning and maintenance of servo valves and high-response valves, see data sheet 07700
- ► Assembly, commissioning and maintenance of proportional valves, see data sheet 07800

Bosch Rexroth AG Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52/18-0 documentation@boschrexroth.de www.boschrexroth.de © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

It must be remembered that our products are subject to a natural process of wear and aging.