
КВ-Трансивер TAURUS

Трансивер «TAURUS-20» предназначен для работы в SSB диапазоне на выбор радиолюбителя: на 20 метров, 40 метров и 80 метров с выходной мощностью около 5 Вт. Различие между версиями в настройках ГПД, полосовых диапазонных фильтрах, а также используемых кварцах для основного кварцевого фильтра. Структурная схема трансивера показана на рисунке 1. Трансивер собран на трех платах: КВ-приемник (плата RX), передатчик (плата TX), усилитель мощности (плата UM). Плату приемника (RX) можно использовать как отдельный SSB приемник на 20-метровый любительский диапазон.

Описание работы приемника TAURUS

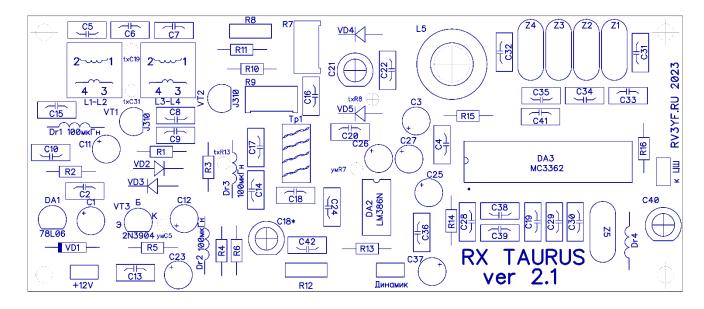
Схема приемника TAURUS-20 показана на следующей странице. Размер платы 119х50 мм. Приемник очень простой легко собирается, и начинает принимать станции с проволочной антенной длинной всего несколько метров. Стабильности генератора ГПД (VFO) достаточно для прослушивания станций. Через короткое время после включения и прогрева, частота приема изменяется на 100-200 Гц за 30 минут.

- Усилитель Высокой Частоты (УВЧ): два каскада УВЧ собраны на двух малошумящих полевых транзисторах VT1 и VT2 (Ј310)
- Микросхема MC3362P «Сердце» приемника: на микросхеме DA1 (MC3362P) выполнены Генератор плавного диапазона (ГПД, англ. «VFO»), первый смеситель, Усилитель промежуточной частоты (УПЧ), опорный гетеродин («BFO») и демодулятор SSB
- **Автоматическая регулировка усиления (АРУ, англ. «АGС»):** собрана на транзисторе 2N3904 или КТ315 (VT3) и двух диодах 1N4148 (VD2 и VD3)
- Усилитель низкой частоты (УНЧ, англ. AF Gain) работает на популярной микросхеме LM386 (DA2), на выход подключается динамик 0,25W 8 Ом
- **Кварцевый фильтр** основной селекции собран по лестничной схеме на четырех кварцевых резонаторах Z2-Z5 на частоту 10 МГц. Такой же резонатор Z1 используется в кварцевом опорном генераторе (BFO), но его частота смещается вниз на 3-4 кГц (до 9,997 9,996 МГц) с помощью индуктивности Dr4 и подстроечного конденсатора C40
- **Полосовой фильтр** собран на контурах L1-L4. Полоса пропускания входного полосового фильтра на L2,L1 и L3,L4 и контура нагрузки УВЧ на Т1 должна быть не менее 14,000...14,350 МГц (для 20-метрового диапазона), 7,000...7,200 МГц (для 40-метрового диапазона) и 3,500...3,800 МГц (для 80-метрового диапазона).

Детали и конструкция

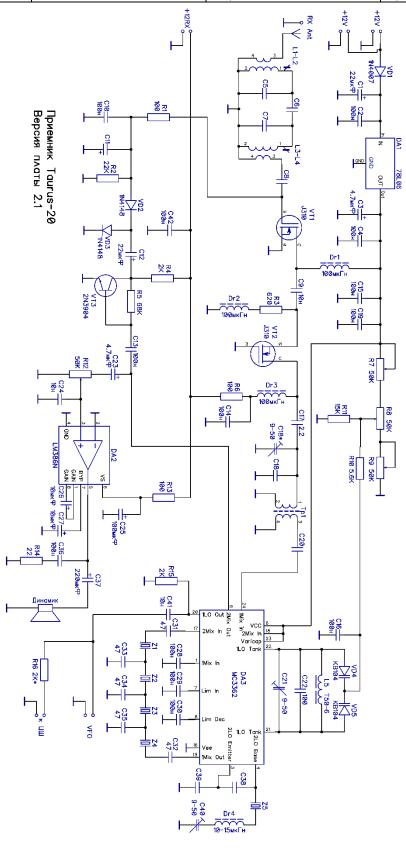
Для сборки и настройки отдельных блоков приемника рекомендуется использовать ВЧ вольтметр и генератор, или прибор для получения АЧХ и частотомер. Если перечисленных приборов нет, то потребуется настройка приемника на слух в процессе включения.

ОБРАЩАЕМ ВНИМАНИЕ! На авторском варианте в кварцевом фильтре используются конденсаторы 47 пФ. Мы подбираем кварцы и конденсаторы под полосу пропускания фильтра примерно 2.9-3.0 КГц. Соответственно, в зависимости от производителя и марки кварца в наборе будет соответствующие номиналы конденсаторов. Также, для информации: полоса фильтра легко корректируется подбором номинала конденсаторов. При увеличении емкости С31-С35 – полоса будет более узкая; при уменьшении – широкая.


Порядок сборки	Индуктив-	Фото
	ность	
Полосовой фильтр L2&L3 и L1&L4	Индуктив- ность L2 и L3 20м:	
 L2, L3: Каркас контура 5мм – 2шт. Для 20м: намотать 20-22 витков проводом 0.35мм Для 40м: намотать 35-37 витков проводом 0.2мм Для 80м: намотать 40 витков (по 8 витков в 	~2.3мкГн 40м: 4мкГн 80м: 9,3 мкГн	
каждой секции каркаса) проводом 0.12мм L1 & L4: Тем же проводом намотать 2 витка (для 20-		
метрового диапазона) и 3 витка (для 40 метров) и 4 витка для 80-метрового диапазона в середине каркаса поверх намоток L2 и L3. Аккуратно зачистить провод острым ножом или скальпелем; и запаять на выводы каркаса Вставить экраны контуров на каркасы.		
L5 – катушка ГПД		
Ферритовое кольцо Т50-6.		
 Для 20м: 45 витков проводом 0.35 мм 	~6.7мкГн	
 Для 40м: 47 витков проводом 0,35 мм 	~8 мкГн	
 Для 80м: 25 витков проводом 0,5 мм 	~5.1 мкГн	
Трансформатор Т1		
• Для 20м: сердечник Т37-6(желтый). Намотать 28 витка проводом 0.35мм. Затем, поверх намотать катушку связи – 2 витка	~2.3мкГн	
• Для 40м: сердечник Т37-2 (красный). Намотать 31 виток проводом 0,35мм. Затем, поверх намотать катушку связи – 3 витка	~2.3 мкГн	40 52
• Для 80м: сердечник Т37-2 (красный). Намотать 39 витков проводом 0,35мм. Затем, поверх намотать катушку связи — Затем, поверх намотать катушку связи — 4 витка	~6.2 мкГн	3

Подготовка к первому включению

- 1. Подсоедините переменные резисторы R8 и R12, а также динамик или наушники.
- 2. Подключите питание 12В на плату
- 3. Если видимый проявления неисправности не обнаружено (т.е. ничего не греется, потребление тока в норме, не более 50mA), то подключите +12B на вывод приемника +12V RX».
- 4. Убедитесь, что ток потребления не более <100mA. Вы должны слышать шум в динамиках (Проверьте изменение громкости регулятором R12). Подключите частотомер на вход "VFO Out". Покрутите движок резистора R8 для проверки работоспособности изменения частоты


Настройка приемника

- 1. ГПД: Частота ГПД (VFO) перестраивается многооборотным переменным резистором R8 на 10-50 кОм путем изменения смещения на варикапах VD4 и VD5. Подстройкой катушки ГПД L5, резисторов R7, R9, а также подстроечного конденсатора C21 необходимо выставить перестройку в пределах
 - а. 4,000...4,350 МГц для 20-метрового диапазона.
 - b. 3,860...4,060 МГц для 40-метрового диапазона.
 - с. 5,070...5,370 МГц для 80-метрового диапазона.
- 2. **Полосовой фильтр**: ПФ должен быть настроен на рабочую частоту для выбранного диапазона постройки тпрансивера. При правильно сделанной намотке согласно инструкции и закрученном сердечнике примерно на 2-3 оборота в контур, приемник должен находиться в пределах рабочей частоты. Более точная настройка может быть осуществлена в дальнейшем на слух или с помощью ВЧ вольтметра.
- 3. **УВЧ** Установите среднюю частоту диапазона, например, 13,170 МГц (для 20м), 7,100 МГц (для 40м) и 3,650 (для 80м). Подстройкой конденсатора С18* необходимо добиться максимального шума в динамике.
- 4. Если УВЧ и ПФ настроены, можно подсоединить антенну к приемнику. Настройте приемник на любую из хорошо проходящих станций.
- 5. **Опорный генератор** (**BFO**): Подстройкой конденсатора C40 необходимо выставить боковую и получить четкий прием станции и разборчивость речи операторов станций.

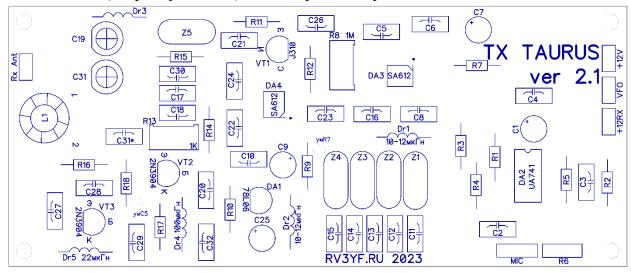
Таблица соответствия номиналов компонентов для диапазонов 20, 40 и 80 метров

Компонент	20 метров	40 метров	80 метров
C5, C7	68 пФ	100 пФ	180 пФ
C6	2,2 пФ	2,2 пФ	4,7 пФ
C8	10 нФ	1000 пФ	1000 пФ
C11	22 мкФ	100 мкФ	100 мкФ
C18	33 пФ	100 пФ	270 пФ
C20	56 пФ	56 пФ	150 пФ
C38	56 пФ	56 пФ	68пФ
C39	100 пФ	100 пФ	180 пФ
Z1-Z5	10 МГц	11,0592 МГц	8,867 МГц

Передатчик Трансивера TAURUS

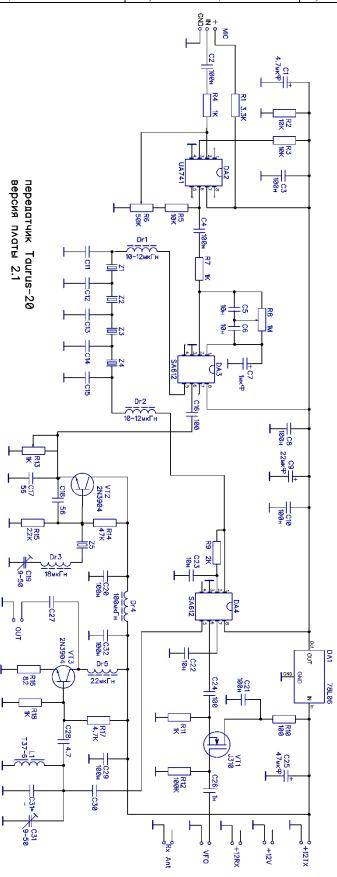
- Схема передатчика TAURUS-20 показана на рисунке. Размер платы 119х50 мм.
- Напряжение питания +12TX для работы платы передатчика поступает с платы усилителя мощности при срабатывании реле К1 «прием-передача»
- Сигнал с микрофона усиливается микросхемой DA3 (UA741) и поступает на балансный модулятор на микросхеме DA2 (SA612), балансируемый потенциометром R8.
- Опорный гетеродин модулятора собран на транзисторе VT2 (2N3904) и кварце Z5, его частота смещается с помощью индуктивности Dr3 и подстроечного конденсатора C19 на 3-4 кГц
 - Вниз до 9,997 9,996 МГц для 20-метрового диапазона
 - о Вниз до 11,064 МГц для 40-метрового диапазона
 - о Вверх на 3-4 кГц до 8,871 МГц для 80-метрового диапазона
- Сигнал DSB после модулятора поступает на 4-кристальный кварцевый фильтр, собранный по лестничной схеме на четырех кварцевых резонаторах Z1-Z4
- Выделенный сигнал верхней боковой полосы (USB) ПЧ=10 МГц (20метров), ПЧ=11,0592 (40 метров) и ПЧ=8,867 (80 метров), поступает на диапазонный смеситель на микросхеме DA3 (SA612), на который через истоковый повторитель на транзисторе VT1 (J310) подается и сигнал ГПД (VFO) с платы «RX» приемника.
- После смесителя сигнал в диапазоне 20, 40 или 80 метров выделяется контуром L1C31 и поступает на усилитель, на транзисторе VT3 (2N3904), а далее на выход (OUT) к плате усилителя мощности

Детали и конструкция


Катушка L1

- Для 20 метров: Сердечник Т37-6. Намотать 41 виток проводом 0.35мм (длина ~60см).
- Для 40 метров: Сердечник Т37-2. Намотать 26 витков проводом 0.35мм (длина \sim 50см). Индуктивность 2,8 мкГн. Параллельно подстроечному конденсатору С31 необходимо добавить С31* =150 пФ
- Для 80 метров: Сердечник Т37-2. Намотать 39 витков проводом 0.35мм (длина \sim 60см). Индуктивность 6,2 мкГн. Параллельно подстроечному конденсатору С31 необходимо добавить С31* = 270 пФ

Настройка передатчика


Для удобной настройки в платах имеются отверстия для доступа отвертки к всем подстроечным компонентам.

- Подстроечным резистором R6 устанавливается уровень микрофона
- Конденсатором С19 подстроить опорный генератор на частоту кварцевого фильтра
- Резистором R13 устанавливается уровень опорного генератора.
- Подстроить L1 подстроечным конденсатором С31 на рабочую частоту
- Если имеются прибора, то для проверки работоспособности платы можно подать НЧ сигнал (например, 1000Гц) и посмотреть его прохождение на выходе платы

Таблица соответствия номиналов компонентов для диапазонов 20, 40 и 80 метров

Компонент	20 метров	40 метров	80 метров
C11-C15	По комплектации	По комплектации	По комплектации
C27	10 нФ	1000 пФ	1000 пФ
C30	4,7 пФ	4,7 пФ	12 пФ
C26	1000 пФ	33 пФ	33 пФ
C31*	-	150 пФ	270 πΦ
Z1-Z5	10 МГц	11,0592 МГц	8,867 МГц

Усилитель мощности Трансивера TAURUS-20

- На плате выполняются три каскада усилителя мощности:
 - о первый каскад на транзисторе VT1 (2N3904)
 - о второй на транзисторе VT2 (2N2219)
 - о третий, выходной каскад на транзисторе VT3 (2SC2078).
- На выходе УМ включен фильтр нижних частот, на элементах L1, L2, C15, C16,C17.

Схема режима работы трансивера (RX/TX) и переключатель антенны выполнен на реле К1. При замыкании клеммы РТТ на «землю» срабатывает реле К1 и своими контактами подает питание на схему передатчика и усилитель мощности, а также переключает антенну от приемника к выходу усилителя мощности.

Детали и конструкция

Внимание! В случае использования платы передатчика TAURUS, конденсатор C1 ставить необязательно, т.к. на плате передатчика уже есть на выходе 10н Φ – C27.

Транзистор VT3 (2SC2078), через отверстие в плате и изоляционную прокладку, крепится к охладителю (радиатору).

Для изготовления трансформатора T1 применяется

- Для 20 метров: Т37-6. Первичная обмотка трансформатора Т1 (1,2) содержит 22 витка провода 0,35мм. Индуктивность 1,5 мкГн. Катушка связи (3,4) содержит 2 витка проводом 0,35мм, поверх первичной обмотки.
- Для 40-метров: Т37-2. Первичная обмотка трансформатора Т1 (3,4) содержит 31 витков провода 0,35мм. Индуктивность 4 мкГн. Катушка связи (1,2) содержит 3 витка проводом 0,35мм, поверх первичной обмотки.
- Для 80-метров: Т37-2. Первичная обмотка трансформатора Т1 (3,4) содержит 39 витков провода 0,35мм. Индуктивность 6,2 мкГн. Катушка связи (1,2) содержит 3 витка проводом 0,35мм, поверх первичной обмотки.

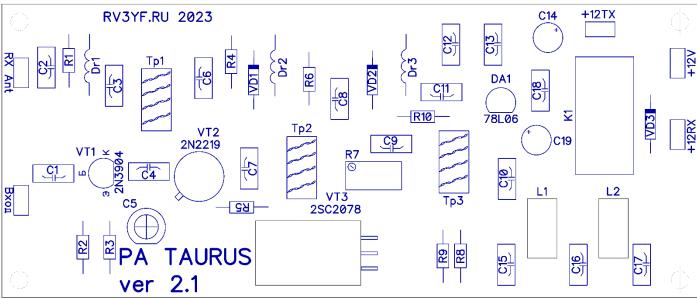
Трансформаторы Т2 и Т3 - по 2х6 витков бифилярной намотки проводом 0,4-0,45. Эти трансформаторы намотаны на ферритовых кольцах 600нн размером 10х6х5.

Для изготовления индуктивностей ФНЧ (L1 и L2) сердечники Т37-6. Катушки L1 и L2 содержат

- 20 метров: по 14 витков провода -0.45мм. Индуктивность -0.6 мк Γ н.
- 40 метров: 15 витков провода 0,45мм. Индуктивность -0,9 мк Γ н
- 80 метров: 23 витка провода 0.45мм. Индуктивность -2.1 мк Γ н.
- Конденсатор C16 состоит из 2х конденсаторов 470пф, расположенных параллельно, т.е. емкость суммируется до 940пФ.
- Резистор R5 подобрать так, чтобы уровень был не перегружен и работал прямолинейно (рекомендуемое сопротивление автором 22 Ом)

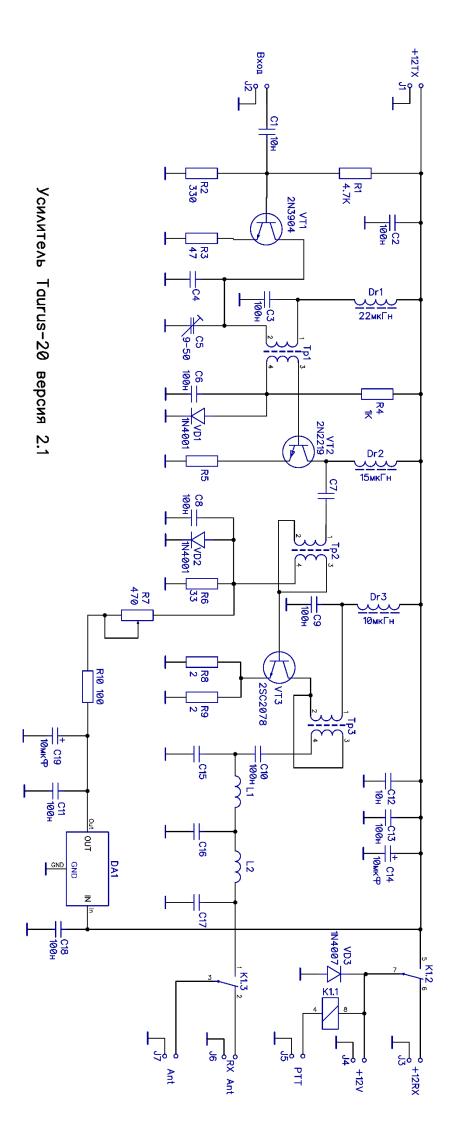
Настройка усилителя

- Подготовить зонд измерительные приборы
- Не включать микрофон к гнезду МІС.
- Установить подстроечный резистор R8 (1 Moм) на плате ТХ в крайнее положение.
- Установить подстроечные резисторы R7 470 ом (на плате УМ) и R13 1 КОм в среднее положение.
- Включить РТТ и измерить значение тока, потребляемого от блока питания. Значение тока не должна быть больше, чем примерно 1000mA.
- ! Если течет гораздо больший ток, немедленно отключить РТТ и просмотреть еще раз соединения и точки пайки.
 - Найдите на контрольном приемнике собственный передающий сигнал (несущая волна).


- Сбалансировать модулятор, корректируя последовательно подстроечные резисторы R8, R13, R8, R13 и т. д. до получения четкого минимум выходного сигнала.
- Разбалансировать модулятор, установив R8 1 МОм в один из крайних положений.
- Подключите зонд измеритель мощности на антенный вход при подключенной искусственной нагрузке 50 ом.
- Подстраивая конденсаторы C31(на плате передатчика) и C5 (на плате УМ) необходимо добиться максимального уровня сигнала

Ниже для самоконтроля автором представлена таблица напряжений на транзисторах:

Коллектор 2N3904 (VT3 плата Передатчика)	0.11V
Коллектор 2N3904 (VT1 плата УМ)	10V
Коллектор 2N2219 (VT плата УМ)	8V
База транзистора С2078	15V
Коллектор С2078	25V
Выход на антенну	Около 25V


Полученная выходная мощность при максимальной нагрузке должна быть порядка 3-5 Bt.

Монтаж:

Таблица соответствия номиналов компонентов для диапазонов 20, 40 и 80 метров

Компонент	20 метров	40 метров	80 метров
C4	47 пФ	100 пФ	270 пФ
C7	100нФ	1000 пФ	1000 пФ
C15, C17	150 пФ	470 пФ	820 пФ
C16	330 пФ	2х470 пФ (940 пф)	1500 пФ
L1, L2	0.6 мкГн	0,9 мкГн	2.1 мкГн
R5	3 Ом	22 Ом	22 Ом

