SENSE PRO

32°C		12:20	0
54 %)	12:20	0
-15-	101		Ċ

Руководство по эксплуатации пульта управления электрическими печами

SENSE PRO

Адрес: ООО "ТЕПЛОМАРКЕТ" 141044, г. Мытищи, деревня Грибки, ул. Промышленная, д. 3/1. <u>https://karina.market</u>

Данное руководство по эксплуатации (далее — РЭ) изделия предназначено для владельца сауны либо ответственного за нее лица, а также для электротехнического персонала, осуществляющего установку и монтаж пульта. В нем содержатся:

- 1. Описание конструкции устройства;
- 2. Описание устройств и их работы;
- 3. Объяснение принципа действия;
- 4. Правила безопасной эксплуатации;
- 5. Дополнительные сведения, необходимые для правильного монтажа и эксплуатации изделия.

Благодарим вас за выбор нашего пульта!

ВНИМАНИЕ!

После приобретения пульта управления и до монтажа и начала эксплуатации внимательно изучите данное РЭ. Лица, не ознакомившиеся с РЭ, до монтажа, эксплуатации и обслуживания пульта управления не допускаются.

ВНИМАНИЕ!

Обслуживание оборудования должно осуществляться **строго** квалифицированным техническим персоналом.

ЗАПРЕЩАЕТСЯ!

Самостоятельное подключение, техническое обслуживание и ремонт пульта управления. Все работы должны выполняться электротехническим персоналом, имеющим допуск к работе с электроустановками до 1000В.

После завершения монтажа и установки пульта управления эта инструкция должна быть передана владельцу сауны или лицу, ответственному за его эксплуатацию.

2. Оглавление :

1. <u>Введение</u>	1
2. Оглавление	2
3. Руководство по эксплуатации	3
3.1. <u>Описание</u>	3
3.2. <u>Назначение изделия</u>	3
3.3. <u>Технические характеристики</u>	4
3.4. <u>Состав изделия</u>	5
3.5. Описание и работа модулей	5
3.6. Инструмент и принадлежности. 1	9
3.7. <u>Маркировка</u> 1	9
3.8. <u>Пломбирование</u> 1	9
3.9. <u>Упаковка</u> 1	9
4. <u>Монтаж</u>	20
4.1. Монтаж и подключение блока мощности 2	20
4.2. Монтаж и подключение дисплейного модуля 2	24
4.3. Монтаж и подключение датчиков	25
5. Работа устройства	60
6. Режимы работы и интерфейс устройства 3	31
6.1. Включение устройства	31
6.2. Режим ожидания	32
6.3. Отложенный запуск 4	1
6.4. <u>Рабочий режим</u>	12
6.5. <u>Аварийные режимы</u> 4	4
7. <u>Обслуживание ПУ</u> 4	16
7.1. Общие указания и периодичность обслуживания 4	6
7.2. Возможные неисправности и их устранение	6
7.3. Текущий ремонт	17
8. Хранение	7
9. Транспортировка	7
10. <u>Утилизация</u> 4	18

3. Руководство по эксплуатации

3.1. Описание

Пульт управления (ПУ) ТМ KARINA "SENSE PRO 15" представляет собой комплекс технических средств, состоящий из:

1. Блока управления и коммутации нагрузки ("Блока мощности");

2. Дисплейного модуля;

- 3. Датчиков;
- 4. Коммутационных проводов;
- 5. Предустановленного программного обеспечения от производителя (далее ПО).

ВНИМАНИЕ!

Предприятие-производитель оставляет за собой право вносить изменения в конструкцию и ПО изделия, не ухудшающие его потребительские свойства.

3.2. Назначение изделия

Изделие предназначено для подключения и управления следующим оборудованием в парной:

- Электрокаменок TM KARINA всего модельного ряда (ограничение по мощности см. <u>Табл.1</u>).
- Электрокаменок сторонних производителей (ограничение по мощности см. Табл.1).
- Парогенератору ТМ KARINA "Steam System".
- Парогенераторов сторонних производителей.
- Освещения (ограничение по мощности см. <u>Табл. 1</u>).

Областью применения являются частные и общественные банные помещения сухого (сауна) и влажного (русская баня) типа.

ЗАПРЕЩАЕТСЯ!

Использовать данное устройство в других целях.

3.3. Технические характеристики

Таблица 1. Технические характеристики ПУ "SENSE PRO 15":

Максимальная мощность подключаемой каменки 3 фазы, кВт *	15
Максимальная мощность подключаемой каменки 1 фазы, кВт *	7,5
Максимальный ток подключаемых нагрузок на каждую из 3-х фаз, А**	22,7
Максимальный ток подключаемых нагрузок на фазу (для однофазной печи), А**	32
Максимальная мощность подключаемого ТЭНового парогенератора, кВт ***	2
Максимальная мощность подключаемого УЗ парогенератора, кВт ***	2
Максимальная мощность подключаемого освещения, кВт	0,5
Номинальное напряжение питания пульта, В **	230
Частота, Гц **	50
Диапазон поддерживаемой температуры, °С	0-110
Критическая температура, °С ***	125
Гистерезис температуры, °С (настраиваемый) ****	3 (до 10)
Шаг установки температуры, °С	1
Диапазон относительной влажности, %	0-100
Шаг установки относительной влажности, %	1
Гистерезис влажности, % (настраиваемый) ****	2 (до 60)
Диапазон времени таймера работы / (шаг), ч / (мин)	0:15-23 / (15)
Диапазон времени таймера отсроченного запуска / (шаг), ч / (мин)	0-23 / (15)
Возможность управления освещением	Да
Габаритные размеры дисплея, ШхВхГл, мм	193x118x34
Габаритные размеры блока коммутации, ШхВхГл, мм	320x135x120
Масса изделия, г	3500
Рабочая температура эксплуатации дисплея и блока коммутации, °С	+10 + 35
Относительная влажность воздуха при эксплуатации (при T ≤ +35 °C)	до 80 %

* Мощности, указанные в Табл. 1, рассчитаны при стандартных значениях номиналов электросетей.

** Номиналы электрических сетей и их стандартные значения, а также диапазон используемого напряжения, необходимые для эксплуатации изделия, определяются по <u>ГОСТ 29322-2014</u> (<u>IEC60038:2009</u>)

*** Аварийная температура, при которой происходит автоматическое отключение магнитного контактора. Подробнее в <u>п. 6.5.3 "Аварийные режимы. Режиме превышения температуры"</u>

**** Настраиваемые значения по умолчанию установлены на предприятии-изготовителе согласно Таблице 4. "Значения настраиваемых параметров по умолчанию"

3.4. Состав изделия

ПУ "SENSE PRO 15" имеет модульную организацию. Перечень представлен в Табл. 2.

Таблица.2: Перечень модулей ПУ "SENSE PRO 15".

Блок мощности***, шт.	1
Дисплейный модуль, шт.	1
Датчик температуры, шт.	1
Датчик влажности, шт.	1
Кабель сигнальный 5м (блок мощности ← → датчик), шт.	2
Кабель соединительный 5м (блок мощности ←→ дисплей), шт.	1

3.5. Описание и работа модулей

1. "Блок мощности" - Модуль коммутации / управления нагрузкой. Состоит из:

1.1. Корпуса с крышками - трехсекционного короба, выполненного в форме прямоугольного параллелепипеда из нержавеющей стали с крышками. (<u>Рис.1., Рис.2.</u>).

На задней стенке корпуса вырезаны отверстия в виде самоцентрирующихся подвесов для настенного монтажа. (Рис. 3. "Блок мощности". С крышками. Вид сзади).

Взаимное расположение составных частей "Блока мощности" представлено на (Рис. 4., Рис. 5).

1.2. "Платы управления" – электронного устройства, предназначенного для:

- Подключения дисплейного модуля к "Блоку мощности" и взаимодействию с ним.

- Подключения датчиков температуры / влажности.

- Управлению датчиками температуры / влажности.

- Обработки информации, поступающей с датчиков и дисплейного модуля.

- Управления коммутацией нагрузки.

На "плату управления" предустановлено ПО, обеспечивающее работу устройства.

1.3. Кабельными вводами для подведения и фиксации проводников питания и нагрузки:

- PG-21 - 2 шт. Ввод / вывод силовых проводников.

- PG-9 - 2 шт. Подключение освещения и парогенератора.

1.4. Магнитного контактора.

Электромеханического устройства, коммутирующего электропечь с электросетями, управляемого "платой управления". Контактор подключен на предприятии-изготовителе и не требует дополнительной протяжки контактов до истечения гарантийного срока эксплуатации. По истечению гарантийного срока проводить осмотр и протяжку контактных групп контактора не реже, чем раз в полгода.

Рис. 1.: "Блок мощности". С крышками. Вид спереди.

Рис.3.: "Блок мощности". С крышками. Вид сзади.

Рис. 4.: "Блок мощности". Без крышек. Вид спереди. Взаимное расположение частей модуля: 1 - Трехсекционный корпус, 2 – Плата управления, 3 – Кабельные вводы, 4 – Магнитный контактор, 5 – Колодочная сборка.

Рис. 5.: "Блок мощности". Без крышек. Изометрия. Взаимное расположение частей модуля: 1 - Трехсекционный корпус, 2 – Плата управления, 3 – Кабельные вводы, 4 – Магнитный контактор, 5 – Колодочная сборка.

1.5. "Колодочной сборки" – комплекта-сборки из пружинных клеммных колодок и промежуточного быстросъёмного реле, разделённых на группы зажимами-ограничителями, предназначенной для:

- Подключения ПУ к электросети.

- Подключения электропечи: в качестве трёхфазной симметричной (трёхпроводная схема без нейтрального провода) или однофазной нагрузки. В зависимости от типа подключаемого оборудования колодочная сборка может быть представлена в исполнении для трёхфазного или однофазного подключения. (<u>Рис. 6.: Колодочная сборка. Трёхфазная. Вид спереди.</u>, <u>Рис. 7.: Колодочная сборка. Трёхфазная. Изометрия.</u>, <u>Рис. 8.: Колодочная сборка. Однофазная. Вид спереди.</u>, <u>Рис. 9.: "Колодочная сборка". Однофазная. Изометрия.</u>)

- Подключения блока питания освещения в парной (разрыв фазы).

- Подключения парогенератора ТМ KARINA или парогенератора стороннего производителя, мощностью до 2 кВт (разрыв фазы).

Рис. 6.: "Колодочная сборка". Трёхфазная. Вид спереди. Взаимное расположение частей модуля: 1 – Вводная группа, 2 – Нейтраль, 3- Заземление, 4 – Колодка "СВЕТ" (разрыв фазы), 5 – Колодка "ПАР" с управляемым промежуточным реле (разрыв фазы), 6 – Выводная группа на печь.

Рис. 7.: "Колодочная сборка". Изометрия.

Рис. 8.: "Колодочная сборка". Однофазная. Вид спереди. Взаимное расположение частей модуля: 1 – Вводная группа, 2 – Нейтраль, 3- Заземление, 4 – Колодка "СВЕТ" (разрыв фазы), 5 – Колодка "ПАР" с управляемым промежуточным реле (разрыв фазы), 6 – Выводная группа на печь.

Рис. 9.: "Колодочная сборка". Однофазная. Изометрия.

2. Дисплейный модуль.

Электронное устройство, предназначенное для вывода информации на матрицу дисплея в виде пользовательского графического интерфейса (GUI). Для взаимодействия человека с интерфейсом в дисплейный модуль интегрирован ёмкостной тачскрин, защищённый стеклом. Интерфейс предоставляет возможность управления и настройки устройства, а также выводит информацию о текущих параметрах, значениях с датчиков, таймеров, режиме работы и другой информации (Подробнее в разделе Интерфейс).

Дисплейный модуль состоит из:

2.1. Корпуса с дисплеем. (<u>Рис. 10: Дисплейный модуль. Вид спереди.</u>, <u>Рис. 11.: Дисплейный модуль.</u> <u>Изометрия</u>).

Рис. 11.: Дисплейный модуль. Изометрия.

2.2. Задней крышки (Рис. 12.: Дисплейный модуль. Вид сзади., Рис. 13.: Дисплейный модуль. Изометрия)

Задняя крышка имеет специальную форму для монтажа в подрозетник, с вырезом под колодку подключения дисплея к "Блоку мощности".

Рис. 12.: Дисплейный модуль. Вид сзади. Взаимное расположение частей модуля: 1 – Задняя крышка,

- 2 Разъём для монтажа в подрозетник,
 - 3 Разъём для подключения кабеля.

Рис. 13.: Дисплейный модуль. Изометрия.

3. Датчики

3.1 "Датчик температуры" (Рис. 14.: Датчик температуры. Вид спереди., Рис.15.: Датчик температуры. Изометрия).

Электронное устройство, выполненное в виде выносного модуля с разъёмом подключения, предназначенное для считывания температуры в парном помещении и передачи на микропроцессор "платы управления" для последующей обработки.

Диапазон рабочих температур от 0 °С до + 110 °С. (Программно ограничен).

Погрешность измерений: ±0.5 в диапазоне от 0 °С до 70 °С.

±2.0 в диапазоне от +70 °С до +110 °С.

Рис. 14.: "Датчик температуры" Вид спереди. Рис. 15.: "Датчик температуры" Изометрия

Взаимное расположение частей модуля: 1 – Задняя крышка с крепёжным отверстием, 2 – Сенсор, 3 – Коробочка.

3.2. "Датчик влажности" (Рис.16.: Датчик влажности. Вид спереди., Рис.17: Датчик влажности. Изометрия)

Электронное устройство, выполненное в виде выносного модуля с разъёмом подключения, предназначенное для считывания показаний относительной влажности в парном помещении и передачи на микропроцессор "платы управления" для последующей обработки.

Диапазон измерения относительной влажности (RH): от 0% до 100%.

Погрешность измерений (RH): ±3 %.

Диапазон рабочих температур: от 0 °C до + 110 °C.

Рис. 16.: "Датчик влажности" Вид спереди. Рис. 17.: "Датчик влажности" Изометрия

Взаимное расположение частей модуля: 1 – Задняя крышка с крепёжным отверстием, 2 – Сенсор, 3 – Коробочка.

3.3 Материал датчиков.

Корпуса датчиков выполнены из нетоксичного композиционного материала, выдерживающего температуру вплоть до 155 °C.

Ссылка на отчёт об испытаниях материала: <u>https://www.esun3d.com/uploads/ePA-CF-filament-ROHS.pdf</u>

3.6. Инструмент и принадлежности

Для удобства монтажа проводников в клеммы комплект ПУ "Sense Pro 15" штатно комплектуется тонкой шлицевой отвёрткой.

3.7. Маркировка

Маркировка устройства не предусмотрена предприятием-изготовителем.

3.8. Пломбирование

На предприятии-изготовителе нанесены пломбы на торцевую крышку отсека магнитного контактора. Нарушение пломб – одна из причин отказа в гарантии.

3.9. Упаковка

Пульт управления TM KARINA "SENSE PRO 15" поставляется упакованным в пенополиэтилен (для фиксации), запечатанным в картонной коробке (T-24) размерами 390 х 315 х 230 мм.

4. МОНТАЖ

Перед монтажом ПУ необходимо проверить его целостность и комплектность, а также убедиться, что выбранная модель пульта по своим параметрам подходит для работы с данной моделью электрокаменки и парогенератора.

ВНИМАНИЕ!

Обслуживание оборудования должно осуществляться строго квалифицированным техническим персоналом.

ВНИМАНИЕ!

Перед началом монтажных работ убедитесь, что источник электроэнергии, к которому производится подключение ПУ и электрокаменки, обесточен.

ВНИМАНИЕ!

Монтаж и эксплуатация ПУ и ЭКП должны осуществляться в строгом соответствии с Постановлением Правительства РФ от 25.04.2012 №390 (ред. от 06.04.2016) «О противопожарном режиме» вместе с «Правилами противопожарного режима в РФ».

Мощность электрокаменки должна соответствовать объему парильного помещения.

Эксплуатация ПУ разрешается только с последовательно включенными плавкими предохранителями или автоматическим выключателем соответствующего номинального тока.

ЗАПРЕЩАЕТСЯ!

Самостоятельное подключение, техническое обслуживание и ремонт пульта управления. Все работы должны выполняться электротехническим персоналом, имеющим допуск к работе с электроустановками до 1000В.

Монтаж ПУ Sense Pro разделён на три части:

- 1. Монтаж и подключение "блока мощности".
- 2. Монтаж и подключение дисплейного модуля.
- 3. Монтаж и подключение датчиков.

4.1. Монтаж и подключение "блока мощности"

1. Блок мощности необходимо устанавливать вне парильного помещения, в сухом, отапливаемом помещении, а также обеспечить защиту от влаги (прямое попадание воды на изделие). Монтаж произвести на дюбель-гвозди диаметром 6 мм (не входят в комплект). Расстояние между дюбель-гвоздями 239 мм (<u>Рис.18.: Блок мощности. Вид сзади.</u>). Допускается устанавливать блок мощности в электрощите или закрывать фальшпанелью, в которых предусмотрена система приточной вентиляции или вентиляционные отверстия.

ВНИМАНИЕ!

Для правильного функционирования магнитного контактора, используемого в "блоке мощности", предельный допуск угла отклонения установки блока должен составлять не более 30°.

ЗАПРЕЩАЕТСЯ!

Установка блока в положениях кроме как "кабельными вводами в пол" / "кабельными вводами в потолок".

Рис. 18.: Блок мощности. Вид сзади.

2. Схемы подключения к сети питания. (Рис. 19.: Схема расположения подключаемых проводников. Трёхфазный блок., Рис. 20 Схема расположения подключаемых проводников. Однофазный блок).

Для подключения к электросети трёхфазного ПУ KARINA Sense Pro рекомендуется использовать следующие марки проводников:

Вводной ("Питающий кабель" стрелка "ВВОД"): ВВГнг; КГнг*

Подключение блока питания освещения (Стрелка "CBET"): ПРКС 2 х 1.5 мм²

Подключение ТЭНового парогенератора или блока питания ультразвукового парогенератора (Стрелка "ПАР"): ПРКС 3 х 1.5 мм²

Подключение электропечи *(Стрелка "ПЕЧЬ"): ПРКС*

При подключении нагрузки к "блоку мощности" ПУ Sense Pro, руководствоваться ограничениями выделяемой мощности, согласно <u>Табл 1</u>.

* Выбор сечения проводника для подключения электрокаменки осуществлять в зависимости от мощности выделяемой нагрузки (необходимое сечение кабеля указано в инструкции по эксплуатации электрокаменки), но не более мощности, указанной в <u>Табл. 1</u>. Так же можно использовать любой аналог термостойкого кабеля, отвечающего условиям проектной документации.

Рис. 19.: Схема расположения подключаемых проводников. Трёхфазный блок.

Рис. 20.: Схема расположения подключаемых проводников. Однофазный блок.

Для работы с клеммными колодками в комплекте к устройству прилагается шлицевая отвёртка.

4.2. Монтаж и подключение дисплейного модуля.

Дисплейный модуль необходимо устанавливать вне парильного помещения (предбанник) на высоте, удобной для использования. А также обеспечить защиту от попадания влаги. Дисплей имеет следующие габаритные размеры (<u>Рис. 21.: Дисплейный модуль. Габаритные размеры</u>):

5

18.3

0.0034.9

Для монтажа используйте подрозетник круглого сечения диаметром 68 мм. (не является частью комплектации).

Этапы монтажа дисплейного модуля:

66.6

126.5

Шаг 1: при помощи отвёртки или пластиковой карты слегка надавите на крючки, находящиеся в пазах, и раздвиньте переднюю и заднюю панели дисплея. (<u>Рис. 22.: Шаг 1: Разъединение панелей дисплея</u>)

Рис. 22.: Шаг 1. Разъединение панелей дисплея.

1 - 2 Пазы.

Шаг 2. Разделите переднюю и заднюю части панелей. (Рис. 23.: Шаг 2: Разъединение панелей дисплея)

Рис. 23.: Шаг 2. Разъединение панелей дисплея

Шаг 3. Закрепите заднюю панель в заранее подготовленном подрозетнике. (Рис. 24.: Шаг 3: Монтаж задней крышки)

Рис. 24.: Шаг 3: Монтаж задней крышки.

Шаг 4. Подключение дисплея к "блоку мощности": (<u>Рис. 25.: Шаги 4.1 - 4.3: Подключение дисплейного</u> модуля к "блоку мощности". Схема расположения подключаемых проводников.)

4.1. Смонтируйте резиновую втулку, предустановленную на соединительный кабель в отверстие, находящееся над колодочной группой дисплея.

4.2 Подключите колодки кабеля к блоку мощности так, чтобы парная колодка "чёрный" и "жёлтозелёный" была присоединена к разъёмам "485А" и "485В" COOTBETCTBEHHO!

4.3 Подключите колодки кабеля к блоку мощности так, чтобы парная колодка "коричневый" и "синий" была присоединена к разъёмам "12V" и "GND" COOTBETCTBEHHO!

Рис. 25.: Шаги 4.1 – 4.3. Подключение дисплейного модуля к "блоку мощности". Схема расположения подключаемых проводников. 1 – колодочная группа для подключения дисплея.

4.4. Подключите второй конец монтажного провода к дисплею* так, чтобы привести в соответствие одноименные контакты** (блок мощности →дисплей), а именно:

4.4.1 Блок мощности. Контакт "12V" → Дисплей. Контакт "9-36V"

4.4.2 Блок мощности. Контакт "GND" → Дисплей. Контакт "GND"

4.4.3 Блок мощности. Контакт "485_А" → Дисплей. Контакт "485_А"

4.4.4 Блок мощности. Контакт "485_В" → Дисплей. Контакт "485_В"

(Рис. 26.: Шаги 4.4.1 - 4.4.4: Подключение дисплейного модуля к "блоку мощности". Схема расположения подключаемых проводников.)

* В дисплее установлены самозажимные колодки, обеспечивающие надёжный контакт. Для удобства и простоты монтажа / демонтажа, рекомендуется ослабить пружинный механизм колодки, аккуратно нажав на паз в "язычке" строго перпендикулярно печатной плате дисплея.

** В случае потребности наращивания длины соединительного провода стоит руководствоваться не цветами жил проводника (организация подключения по цветам выбрана для удобства восприятия человеком), а соответствием подключаемых контактов (блок мощности →дисплей).

(Рис. 26.: Шаги 4.4.1 - 4.4.4. Подключение дисплейного модуля к "блоку мощности". Схема расположения подключаемых проводников.)

Шаг 6. Совместите верхние части передней и задней панелей так, чтобы передняя часть "села" пазами на "язычки". (Рис. 27.: Шаг 6: Монтаж передней панели дисплея.)

Рис. 27.: Шаг 6. Монтаж передней панели дисплея. 1 – пазы и "язычки"

Шаг 7. Аккуратно прижмите нижнюю часть передней панели к задней и защёлкните дисплей по периметру. (Рис. 28.: Шаг 6: Монтаж передней панели дисплея)

Рис. 28.: Шаг 7. Монтаж передней панели дисплея.

4.3. Монтаж и подключение датчиков

1. Датчики температуры и влажности следует устанавливать в парном помещении (зоне приёма процедур), прокладывая соединительный кабель датчиков под обшивкой.

ВНИМАНИЕ!

Во избежание наводок и некорректной работы ПУ не допускается прокладка силовых и управляющих кабелей в одном кабель-канале. Расстояние между ними должно быть НЕ МЕНЕЕ 30 см.

ЗАПРЕЩАЕТСЯ!

Прокладка сигнального кабеля датчиков вдоль силовых кабелей высокого напряжения.

Располагать датчик температуры следует на расстоянии 200 мм. от полотка и не менее 1000 мм. от печи и парогенератора, а также не менее 500 мм от направленных потоков воздуха (вытяжной вентилятор). Поток воздуха вблизи датчика охлаждает его и приводит к неточности показаний пульта управления. В результате возможен перегрев каменки. Не допускается установка датчика рядом с дверью или окном.

Датчик влажности следует располагать ниже датчика температуры на расстоянии ~ 400 мм. Для датчика влажности действуют те же рекомендации.

2. Подключение датчиков к "блоку мощности":

Шаг 1. Смонтируйте резиновую втулку, предустановленную на один из сигнальных кабелей в отверстие, находящееся над разъёмом под датчик температуры.

Шаг 2. Смонтируйте резиновую втулку, предустановленную на один из сигнальных кабелей в отверстие, находящееся над разъёмом под датчик влажности.

Шаг 3. Соедините сигнальные проводники с разъёмами и проложите их до места монтажа в зоне приёма процедур. (Рис. 29.: Разъёмы для подключения датчиков).

Шаг 4. Другой конец сигнального проводника присоедините к датчикам температуры и влажности соответственно* разъёмам на печатной плате ПУ. (Рис. 30.: Датчик температуры / влажности. Вид сзади)

Шаг 5. Прикругите датчик температуры на самонарезной винт к поверхности стены.

Шаг 6. Отсоедините наклейку.

Рис. 29.: Разъёмы для подключения датчиков". 1 – Разъём подключения датчика температуры. 2 – Разъём подключения датчика влажности.

Рис. 30.: Датчик температуры / влажности. Вид сзади. (с вариантами маркировок) * Датчики температуры и влажности дополнительно маркируются соответствующими наклейками.

5. Работа устройства

Работа устройства заключается в поддержании и контроле параметров в парной, заданных конечным пользователем. Программное обеспечение, электронные / электромеханические устройства, лежащие в основе ПУ, обеспечивают работу:

- 1. Графического интерфейса (GUI), отображающего:
- Текущую температуру (в °С);
- Текущую относительную влажность (в %);
- Отсчёт отложенного времени до сеанса;
- Отсчёт времени сеанса;
- Заданную температуру (в °С);
- Заданную относительную влажность (в %);
- Заданное отложенное время до сеанса;
- Заданное время сеанса;
- Текущий режим работы;
- Статуса освещения (вкл. / выкл.);
- Статус звукового оповещения (вкл. / выкл.);
- Общее время наработки печи;
- Общее время наработки текущего сеанса;
- Общее время наработки ТЭНов;
- Версию программного обеспечения дисплея;
- Версию программного обеспечения пульта управления.
- 2. Программы настройки, контроля и поддержания заданных параметров:
 - Температуры в парной с учётом гистерезиса;
 - Температурного гистерезиса;
 - Относительной влажности с учётом гистерезиса;
 - Гистерезиса влажности;
 - Начальной температуры парогенерации;
 - Времени сеанса;
 - Времени отложенного запуска;
 - Включение / выключение освещения;
 - Включение / выключение звуковой индикации прикосновения;
 - Яркости дисплея;
 - Сброс учёта времени наработки ТЭНов;
 - Включение режимов работы.
- 3. Периферийного оборудования для:
- Коммутация электрокаменки с электросетями;
- Коммутация парогенератора с электросетями;
- Коммутация освещения с электросетями;
- Датчика температуры;
- Датчика влажности;
- Дисплея.

6. Режимы работы и интерфейс устройства

Виртуально работа устройства разделена на 5 режимов.

6.1. Включение устройства

Включение устройства происходит при подаче питающего напряжения на ПУ. Последовательно происходит включение "платы управления", дисплейного модуля, а также инициализация всей периферии устройства. На дисплее отображается загрузочный экран с логотипом. (<u>Рис. 31.</u> Загрузочный экран с логотипом "KARINA".)

Рис. 31. Загрузочный экран с логотипом "KARINA".

6.2. Режим ожидания

После включения устройство переходит в режим ожидания, предназначенный для настройки параметров перед запуском других режимов (кроме аварийного), а на дисплей выводится первая "Главная" (<u>Рис. 32. Взаимное расположение элементов интерфейса "Главной" страницы"</u>) вкладка интерфейса со следующей информацией:

- 1. Температура в парном помещении.
- 2. Влажность в парном помещении.
- 3. Заданное время сеанса.
- 4. Заданное время отложенного запуска.
- 5. Пиктограмма включения / выключения освещения в парной с индикацией.
- 6. Пиктограмма перехода на страницу "Пользовательские настройки".
- 7. Пиктограмма переключения режимов работы устройства с индикацией.

Рис. 32. Взаимное расположение элементов интерфейса "Главной" страницы.

Настройка параметров производится на второй странице интерфейса - "Пользовательские настройки". (<u>Рис. 33. Взаимное расположение элементов интерфейса страницы "пользовательские настройки".</u>) Переход осуществляется прикосновением к пиктограмме, с её последующим "тиснением".

"Пользовательские настройки" включают в себя:

- 1. Установку требуемой температуры.
- 2. Установку требуемой относительной влажности.
- 3. Установку длительности сеанса.
- 4. Установку времени отложенного запуска перед началом сеанса.
- 5. Настройку яркости дисплея.
- 6. Включения / выключение звукового оповещения прикосновения в тачскрину.
- 7. Пиктограмма перехода на "Главную страницу".
- 8. Пиктограмма перехода на страницу "Пользовательские настройки" (с тиснением).
- 9. Пиктограмма перехода на "Информационную страницу".

Рис. 33. Взаимное расположение элементов интерфейса страницы "пользовательские настройки".

Переход на "Информационную" страницу осуществляется прикосновением к пиктограмме, ос её последующим "тиснением". (<u>Рис. 34. Взаимное расположение элементов интерфейса</u> "информационной" страницы.)

На "Информационной" вкладке отображается:

- 1. Общее время наработки ПУ (количество часов наработки ПУ).
- 2. Время наработки ТЭНов.
- 3. Время наработки сеанса.
- 4. Текущая версия ПО дисплея.
- 5. Текущая версия ПО контроллера.
- 6. Счётчик замен ТЭНов (при замене ТЭНов есть возможность обнулить время наработки ТЭНов).
- 7. Ссылка на сайт производителя: <u>https://karina.market/.</u>
- 8. Пиктограмма перехода на "Информационную страницу" (с тиснением).
- 9. Пиктограмма перехода на страницу "Пользовательские настройки" (с тиснением).
- 10. Пиктограмма перехода на "Главную страницу".
- 11. Переход на страницу дополнительных настроек через пароль. 🎯

Рис. 34. Взаимное расположение элементов интерфейса "информационной" страницы.

Дополнительные настройки.

В работе устройства предусмотрены дополнительные настройки, находящиеся под паролями. Пароль вводится на отдельной странице, переход на которую осуществляется прикосновением к пиктограмме (Вкладка "Информация"). (<u>Рис. 35. Взаимное расположение элементов интерфейса</u> <u>страницы "ввод пароля"</u>). Пароли для перехода представлены в <u>Табл. 3.</u>

Вкладка содержит:

- 1. Пиктограмму возврата в предыдущее меню.
- 2. Пиктограмму удаления введённого значения.
- 3. Цифровую клавиатура.
- 4. Пиктограмма ввода набранного значения.
- 5. Поле отображаемых значений.

Рис. 35. Взаимное расположение элементов интерфейса страницы "ввод пароля".

Таблица 3. Пароли перехода в подменю дополнительных настроек:

Код:	Подменю:
3337	Настройка температурного гистерезиса
4568	Настройка параметров парогенерации
4893	Сброс счётчика наработки ТЭНов.

Таблица 4. "Значения настраиваемых параметров по умолчанию".

Гистерезис температуры, °С	3
Гистерезис влажности, %	3
Начальная температура парогенерации, °С	25

Настройка температурного гистерезиса.

Для поддержания заданной температуры в парном помещении ПО ПУ Sense Pro предоставляет возможность настройки нижнего значения температурного гистерезиса*, при котором будет происходить включение электрокаменки в "рабочем" режиме. При этом верхний порог определяется значением температуры, установленным во вкладке "пользовательских" настроек до начала работы. Изменение значений возможно в диапазоне от 3 до 10°С и происходит за счёт прикосновения к пиктограммам "меньше" и "больше" соответственно. Шаг изменения - 1 ед. измерения. Сохранение значений происходит автоматически, повторная настройка после перезапуска устройства не требуется. Пиктограммы других вкладок позволяют совершить быстрый переход в любую часть интерфейса по желанию.

Вкладка содержит:

- 1. Пиктограмма перехода на "Главную" вкладку.
- 2. Пиктограмма перехода на вкладку "Пользовательских" настроек.
- 3. Пиктограмма перехода на "Информационную" вкладку.
- 4. Поле настройки "Гистерезиса нижнего порога температуры"

Рис. 36. Взаимное расположение элементов интерфейса страницы "настройка гистерезиса"

*Параметр, определяющий работу в заданном диапазоне и используемый для тонкой настройки, позволяющей нивелировать особенности реализации проекта парного помещения (вытяжка, утепление и т.д.), влияющие на динамику тепловых процессов при заданной выделяемой мощности в печи.

Пример настройки температурного гистерезиса и последующей работы ПУ (значения взяты произвольно):

1. Пользователь задал значение температуры в парной 60°С, при этом установив гистерезис нижнего порога температуры равным 5.

2. Электрокаменка выключится при достижении температуры в парной равной 60 °С.

3. Последующее включении электрокаменки произойдёт при температуре 55°С.

4. Устройство будет поддерживать температуру в парном помещении в диапазоне от 55°С до 60°С.

Настройка параметров парогенерации.

Для поддержания заданной относительной влажности в парном помещении ПО ПУ "Sense Pro" предоставляет возможность настройки нижнего значения гистерезиса относительной влажности, при котором будет происходить включение парогенератора в "рабочем" режиме, а также начальную температуру парогенерации*. При этом верхний порог гистерезиса определяется значением относительной влажности, установленной во вкладке "пользовательских" настроек до начала работы. Изменение значений возможно в диапазоне от 3% до 60% для гистерезиса нижнего порога парогенерации и от 25 °C до 40 °C для начальной температуры парогенерации, и происходит за счёт прикосновения к пиктограммам "меньше" и "больше" соответственно. Шаг изменения параметров - 1 ед. измерения. Сохранение значений происходит автоматически, повторная настройка после перезапуска устройства не требуется. Пиктограммы других вкладок позволяют совершить быстрый переход в любую часть интерфейса по желанию.

(Рис. 37. Взаимное расположение элементов интерфейса страницы "настройка параметров парогенерации").

- 1. Пиктограмма перехода на "Главную" вкладку.
- 2. Пиктограмма перехода на вкладку "Пользовательских" настроек.
- 3. Пиктограмма перехода на "Информационную" вкладку.
- 4. Поле настройки "Начальной температуры парогенерации".
- 5. Поле настройки "Гистерезиса нижнего порога влажности".

Рис. 37. Взаимное расположение элементов интерфейса страницы "настройка параметров парогенерации".

* Начальная температура парогенерации – параметр, предназначенный для исключения преждевременного испарения влаги оборудованием и защиты парной от выпадения конденсата на непрогретых (холодных) поверхностях. Используется для тонкой настройки, позволяющей нивелировать особенности реализации проекта парного помещения (вытяжка, утепление и т.д.), влияющей на динамику прогрева и точку выпадения росы. Старт работы парогенератора подразумевается при "прогретой" каменке и "теплых" стенах.

Пример настройки параметров парогенерации и последующей работы ПУ (значения взяты произвольно):

1. Пользователь задал значение относительной влажности в парной 60 %, при этом установив гистерезис нижнего порога влажности равным 5, а значение начальной температуры парогенерации равным 30 °C.

2. После перехода ПУ в "рабочий" режим, парогенерация начнётся только при условии достижения температуры в парной равной 30 °C.

3. Парогенератор выключится при достижении заданной относительной влажности равной 60% (не выключится до тех пор, пока не будет достигнут заданный параметр).

4. Последующее включение парогенератора произойдёт при 55% относительной влажности.

5. Устройство будет поддерживать значение относительной влажности в диапазоне от 55% до 60%.

<u>27.51.28.110</u> (код продукции)

Сброс счётчика наработки ТЭНов.

Одной из функций, поддерживаемых ПО ПУ Sense Pro, является сброс счётчика наработки ТЭНов. Процедуру необходимо проводить при замене ТЭНов (или ТЭНовой сборки печи в случае TM KARINA Clio). Необходимость данной процедуры заключается в контроле наработки ТЭНов до их отказа и дальнейшем предоставлении сервиса по ремонту оборудования (гарантийном и постгарантийном обслуживании).

Процедура сброса: при переходе на страницу сброса времени наработки ТЭНов нажать "ОК". Сохранение значений происходит автоматически. Отображения информации о произведённом сбросе можно увидеть на "информационной" вкладке (всего замен ТЭНов).

Пиктограммы других вкладок позволяют совершить быстрый переход в любую часть интерфейса по желанию. (<u>Рис. 38. Взаимное расположение элементов интерфейса страницы "Сброса счётчика наработки ТЭНов".</u>)

Вкладка содержит:

- 1. Пиктограмма перехода на "Главную" вкладку.
- 2. Пиктограмма перехода на вкладку "Пользовательских" настроек.
- 3. Пиктограмма перехода на "Информационную" вкладку.
- 4. Поле подтверждения сброса счётчика наработки ТЭНов "ОК".

Рис. 38. Взаимное расположение элементов интерфейса страницы "Сброса счётчика наработки ТЭНов".

6.3 Отложенный запуск

Режим работы устройства, предназначенный для обратного отсчёта времени, заданного пользователем, и последующего автоматического перехода в "рабочий" режим с заранее настроенными значениями температуры и влажности.

Процедура настройки и включения устройства в режиме отложенного запуска:

1. Произвести начальные настройки времени сеанса, времени отложенного старта, требуемой температуры и влажности в парном помещении на странице "пользовательские настройки". (<u>Рисунки</u> <u>39</u> – <u>40</u>. Взаимное расположение элементов интерфейса страницы "пользовательские настройки" с уведомлением по ограничению).

При настройке стоит учитывать следующее:

- Время сеанса настраивается в диапазоне от 15 минут до 23 часов;
- Время отложенного старта настраивается в диапазоне от 0 минут до 23 часов (при выборе 0 минут, режим отложенного запуска пропускается);
- Шаг изменения времени (в большую или меньшую сторону) 15 минут (1/4 часа);
- Температура настраивается в диапазоне от 10 до 110 °C;
- Влажность настраивается в диапазоне от 0% до 100%;
- Шаг изменения температуры / влажности 1 ед.;
- В устройстве предусмотрено "Правило 110", т.е. сумма значений температуры (в °С) и влажности (в %) не может превышать 110.

Например: при повышении температуры/влажности* в процессе настройки, если сумма значений превысит 110, то на дисплей будет выведено оповещение о достижении предельного значения температуры / влажности* (в зависимости от ситуации) и предложение уменьшить значение влажности / температуры* (соответственно). В противном случае система сделает это автоматически.

Рисунок. 39

Рисунок. 40

Взаимное расположение элементов интерфейса страницы "пользовательские настройки" с уведомлением по ограничению.

* В данном случае температура / влажность рассматривается как взаимозависимая пара значений параметров, рассчитанных по формуле:

$$C + \%$$
 Hum ≤ 110 .

2. Перейти на "заглавную" вкладку с отображением текущей температуры и влажности в парном помещении, а также настроенного времени отложенного старта и времени сеанса. Единоразовым прикосновением к пиктограмме переключения режимов перевести устройство в режим отложенного запуска. (Рис. 41 Отложенный запуск)

Рис. 41. Взаимное расположение элементов интерфейса "Главной" страницы в режиме отложенного запуска.

При этом переход в режим "отложенного запуска" приводит к следующему:

1. На пиктограмме переключения режимов отобразится круглый сигнализирующий индикатор янтарного цвета, оповещающий о действующем режиме отложенного запуска.

2. Таймер отложенного запуска начнёт обратный отсчёт, пока не достигнет нулевого значения.

3. При достижении нулевого значения таймером отложенного запуска, устройство перейдёт в "рабочий" режим.

6.4 Рабочий режим

Режим работы устройства, предназначенный для нагрева и увлажнения парного помещения в течении времени, заданного пользователем в автоматическом режиме.

Процедура перехода устройства в "рабочий" режим (возможен один из перечисленных вариантов):

1. Автоматический переход при истечении времени отложенного запуска.

2. Автоматический переход при выставлении времени "отложенного запуска" равным нулю. Режим "отложенного запуска" игнорируется. Устройство сразу переходит в "рабочий" режим.

3. Принудительный перевод в "рабочий" режим из режима "отложенного запуска" происходит при повторном нажатии на пиктограмму переключения режимов.

(Рис. 42. Взаимное расположение элементов интерфейса "Главной" страницы в "рабочем" режиме.)

При этом любой из вариантов перехода в "рабочий" режим приводит к следующему:

1. На пиктограмме переключения режимов круглый сигнализирующий индикатор янтарного цвета, оповещающий о действующем режиме "отложенного запуска", заменится на индикатор зелёного цвета, оповещающий о действующем "рабочем" режиме.

- 2. Таймер отложенного запуска обнулится.
- 3. Таймер длительности сеанса начнёт вести обратный отсчёт до нулевого значения.

Рис. 42. Взаимное расположение элементов интерфейса "Главной" страницы в "рабочем" режиме.

При функционировании ПУ в "рабочем" режиме стоит учитывать следующее:

- Функция парогенерации запустится только при достижении начальной температуры парогенерации.

- После достижения заданной температуры, устройства нагрева помещения и парогенерации начнут работать совместно, обеспечивая заданные пользователем параметры, с учётом настроенных гистерезисов (температуры и влажности).

- Каждое из исполнительных устройств работает со своей динамикой.

- В процессе работы так же действует правило 110. Устройство в следящем режиме оценивает атмосферу в помещении и ограничивает работу исполнительных устройств при нарушении условия данного правила.

- Работа устройства будет прекращена при достижении температуры в парной ≥ 125 °С (механизм защиты сенсоров от перегрева).

Завершение рабочего режима возможно в двух случаях:

1. Автоматическое завершение работы и переход в режим "ожидания" при истечении времени таймера длительности сеанса.

2. Принудительное завершение сеанса единичным прикосновение к пиктограмме переключения режимов. При этом сигнализирующий индикатор зелёного цвета исчезает, а устройство переходит в режим ожидания.

6.5 Аварийные режимы

Режим работы, предназначенный для перевода устройства в "режим ожидания" при возникновении одной из следующих неполадок:

1. Неисправность датчика температуры. Заключается в потери связи платы управления с датчиком на период времени более 2-х минут. Сопровождается звуковым сигналом и выводом на экран дисплея оповещения об ошибке. (Рис. 43. Ошибка неисправности датчика температуры). Продолжается до момента восстановления связи с исправным датчиком, не позволяя управлять устройством. Процесс восстановления происходит в автоматическом режиме при условии исправности и правильного подключения датчика.

Рис. 43. Ошибка неисправности датчика температуры.

После восстановления связи с датчиком, устройство переходит в "режим ожидания", а для восстановления отображения интерфейса необходимо единичное прикосновение к сенсору дисплея.

2. Неисправность датчика влажности. Заключается в потери связи платы управления с датчиком на период времени более 30 секунд. Сопровождается звуковым сигналом и выводом на экран дисплея оповещения об ошибке (Рис. 44. Ошибка неисправности датчика влажности). Продолжается до момента восстановления связи с исправным датчиком, не позволяя управлять устройством. Процесс восстановления происходит в автоматическом режиме при условии исправности и правильного подключения датчика.

Рис. 44. Ошибка неисправности датчика влажности.

После восстановления связи с датчиком, устройство переходит в "режим ожидания", а для восстановления отображения интерфейса необходимо единичное прикосновение к сенсору дисплея.

3. Режим превышения температуры. Дополнительным ограничение в работе устройства является превышение температуры в парном помещении свыше 125 °C. При достижении этого порога, устройство автоматически обесточивает электропечь до возвращения в заданный предел. Данный механизм не подразумевает никакой индикации.

7. Обслуживание ПУ

7.1. Общие указания и периодичность обслуживания

С периодичностью **не реже, чем раз в полгода,** с момента окончания гарантийного срока проводить осмотр питающих электропроводников, проверять надёжность и производить протяжку контактных соединений.

ВНИМАНИЕ!

Проводить обслуживание изделия необходимо строго обесточенным. Обслуживание электрической части печи необходимо производить электротехническому персоналу, имеющему допуск к работе с электроустановками до 1000В.

7.2. Возможные неисправности и их устранение

Возможная неисправность	Возможная причина	Устранение
Парильное помещение не нагревается до желаемой температуры	Плохая теплоизоляция парильного помещения	Проверить теплоизоляцию и вентиляцию парильного помещения
	Не правильное подключение электропитания	 Последовательно проверить: Напряжение питания Исправность и подключение автоматического выключателя Исправность и подключение УЗО Исправность подводящего кабеля и контактов Исправность ТЭН (проверить целостность, проверить сопротивление
	Выход из строя реле на плате управления	Заменить плату управления
	Выход из строя магнитного контактора	Заменить магнитный контактор
Срабатывает автоматический выключатель или УЗО	Автоматический выключатель или УЗО неисправны или меньшего номинала	Проверить автоматический выключатель и УЗО
	Неисправен ТЭН	Проверить ТЭН
	Утечки тока на корпус блока мощности	Последовательно проверить все подходящие и отходящие проводники
	Плохой контакт сигнального	Переобжать кабель
	кабеля с разъёмом платы управления	Заменить плату управления
Ошиока датчика температуры	Плохой контакт сигнального	Переобжать кабель
	кабеля с разъёмом датчика температуры	-
Текущая температура, отображаемая на дисплее, не соответствует действительности	Неисправен датчик температуры	Заменить датчик температуры
	Плохой контакт сигнального	Переобжать кабель
Ошибка датчика влажности	кабеля с разъёмом платы управления	Заменить плату управления
		Переобжать кабель

	Плохой контакт сигнального кабеля с разъёмом датчика влажности	Заменить датчик влажности
Текущая температура, отображаемая на дисплее, не соответствует действительности	Неисправен датчик влажности	Заменить датчик влажности
Пульт управления не включается	Отсутствует напряжение питания Перегорел плавкий	Проверить питающий провод на наличие фазного напряжение. Проверить контакт нулевого проводника
	предохранитель*	Замените плавкий предохранитель
Магнитный контактор не включается	Отсутствует напряжение питания	Проверить питающий провод на наличие фазного напряжение. Проверить контакт нулевого проводника
	Перегорел плавкий предохранитель*	Замените плавкий предохранитель

Таблица 5. Возможные неисправности и их устранение.

* Используйте быстродействующий плавкие предохранители: 250В 3.15А 5х20 мм:

7.3. Текущий ремонт

Текущий гарантийный и постгарантийный ремонт изделия производится предприятием изготовителем по адресу: 141044, г. Мытищи, деревня Грибки, ул. Промышленная, д. 3/1. Контактный телефон сервисной службы: +7 967 020-77-16. E-mail: service@teplomarket-m.ru

8. Хранение

Срок хранения изделия составляет 1 (один) год с момента приобретения изделия потребителем и истекает вместе с гарантийным периодом.

Условия хранения: Л1. Определяются по ГОСТ 15150-69 для климатического исполнения УХЛ кат.4.2. ПУ должен храниться в упакованном виде, в вертикальном положении, в отапливаемом и вентилируемом помещении при: температуре от +5 °C до +40 °C и среднегодовой влажности не более 60% про 20°C. В помещении хранения не должно быть пыли, грязи, паров кислот и щелочей, вызывающих коррозию изделия.

ВНИМАНИЕ!

При несоблюдении правил хранения как потребителем, так и любой другой организацией, претензии к работе изделия не принимаются, бесплатный ремонт и замена не производится.

9. Транспортировка

Транспортировка ПУ допускается в вертикальном положении в упаковке производителя любым видом транспорта закрытого типа. При транспортировке ПУ в упаковке должен быть закреплен таким образом, чтобы исключить удары и опрокидывания. После транспортирования при отрицательных температурах, прибор необходимо выдержать в упаковке при нормальных климатических условиях не менее 3-х часов.

ВНИМАНИЕ!

При несоблюдении правил транспортировки как потребителем, так и любой другой организацией, претензии к работе изделия не принимаются, бесплатный ремонт и замена не производится

10. Утилизация

При выработке срока службы, пришедшие в негодность из-за неправильной эксплуатации, аварии, ПУ подлежит утилизации. Необходимо произвести демонтаж изделия, после чего произвести его утилизацию в общем порядке.

ПУ не содержит материалов и комплектующих, представляющих опасность для окружающих.

№ ЕАЭС RU C-RU.HB94.B.00520/25 СЕРИЯ <mark>RU</mark> № <mark>0564344</mark>

В соответствии с ТҮ 3468-001-46465170-2019

Документ может быть изменён без предупреждения.