
Axial piston variable displacement unit A10VZO

Features

- ► For use in one- and two-quadrant operation
- Suitable for start/stop operation
- Suitable for long pressure holding operation
- ► Proven A10 rotary group technology
- Through drive option

- ► For variable-speed operation with synchronous and asynchronous motors
- ➤ Size 10

 Nominal pressure/maximum pressure 250/315 bar
- ➤ Size 18 to 45

 Nominal pressure/maximum pressure 315/350 bar

 Size 71 to 180
 - Nominal pressure/maximum pressure 280/350 bar
- ▶ Open circuit

Product description

The proven axial piston units from the A10 product family have now been further developed for use in speed-controlled drives. They are approved for start/stop operation and designed for a changing direction of rotation. Even at the lowest speed between 0 and 200 rpm, they provide a constant pressure and offer extremely high efficiency in pressure holding operation. The A10VZO units can be used as pumps in one- and two-quadrant operation.

Type code A10VZO

01	L	02	03	04	05		06	07		08	0	9	10)	11		12	13
A10	ov	Z	0			/	10		-	V			С				N00	
Axial	piston	unit																
01			design, va	ariable														A10V
Annli	cation	area																
$\overline{}$			ed drives															Z
	ating n				-													
03		, open	circuit															О
Size (, - [
04		etric di	isplacem	ent, see t	able of valu	ies on pa	ge 31			010	018	028	045	071	100	140	180	İ
				nediate si		200 On pa	80 01			006, 008					-00			
Conti	ol dev	ico												<u> </u>				
05		oint co	ntrol		electrical		U = 1	12 V		•	•	•	•	0	0	0	0	EZ300 ¹⁾
							U = 2			•	•	•	•	0	0	0	0	EZ400 ¹⁾
				_	hydraulic					•	•	•	•	0	0	0	0	DG000 ¹⁾
	Press	ure con	troller		hydraulic					•	•	•	•	0	0	0	0	DR000
				_	remote cor	ntrolled hy	/draulical	ly		•	•	•	•	0	0	0	0	DRG00
	Torqu	e contr	oller				Size	018 to 180										
	Begin	ning of	control				up to	50 bar		-	•	•	•	0	0	0	0	LA5D0
							51 to	90 bar		-	•	•	•	0	0	0	0	LA6D0
							91 to	o 160 bar		-	•	•	•	0	0	0	0	LA7D0
							161	to 240 bar		-	•	•	•	0	0	0	0	LA8D0
							over	240 bar		-	•	•	•	0	0	0	0	LA9D0
Serie	s																	
06	Series	s 1, ind	ex 0															10
Direc	tion of	f rotation	on ²⁾															
07	Viewe	ed on di	rive shaft	:	(clockwise												R
					(counter-cl	ockwise											L
Sealiı	ng mat	erial																
08	FKM ((fluoroe	lastomer	-)														V
Drive	shaft																	
09	Spline	ed shaf	t :	Standard	shaft					•	-	-	-	-	0	0	0	S
	ANSI	B92.1a	:	similar to	shaft "S" h	nowever f	or higher	torque		-	•	•	•	0	-	-	-	R
Moun	ting fl	ange																
10	ISO 3	019-1 (SAE)			2-hole				•	•	•	-	-	-	-	_	С
1 ,																		

Notice

- ▶ Note the project planning notes on page 105.
- ► In addition to the type code, please specify the relevant technical data when placing your order.
- $\overline{\ \ }$) Please specify mechanical flow control $V_{g\;max}$ and $V_{g\;min}$ in the order text.
- 2) Changing direction of rotation permissible with the same pressure side for decompression

A10)V Z	0			/	10		-		V			С				N00	
Vorki	ing port ³⁾								003 t	o 010	018	028	045	071	100	140	180	
11	SAE flange ports at top and bottom, on opposite sides, metric fastening thread with universal through drive					g		-	-	-	-	0	0	0	0	22U ⁵⁾		
	SAE flange p thread							g		-	•	•	•	0	0	0	-	12 ³⁾⁵⁾
	DIN 3852 threaded ports at rear, not for through drive								•	-	-	-	-	-	-	-	14	
	DIN 3852 thr	eaded ports	s on op	posite sid	le, only for	through	drive			•	-	-	-	-	-	-	-	07
hrou	gh drive (for	dimensions	and mo	ounting o	ptions, see	e page 95))		003 t	o 010	018	028	045	071	100	140	180	
12	With through-drive shaft, without hub, without intermediate flange; fastening thread metric, with universal through drive, only port plate 22U						2U		-	_	_	-	0	0	0	0	00 ⁴⁾⁵⁾	
	Without through drive, only port plates 12 and 14								•	•	•	•	0	0	0	0	N00	
	Flange ISO 3 Diameter	Мо	unting ⁷)	Hub for sp Diameter		ft ⁶⁾							1		1		
				")	Diameter													
	82-2 (A)	م, ه		5/8 in	9T 16/32E					•	•	•	•	-	-	-	-	K01
}		ه, ه		·	11T 16/32					•	•	•	•	-	-	-	-	K52
	101-2 (B)	م, ه		7/8 in	13T 16/32						-	•	•	-	-	-	-	K68
	Port plate 2:		<u>→ 1</u>	. in	15T 16/32	DP					-	_	•	-	-	_	-	K04
	Flange ISO 3019-1 Hub for splined shaft ⁶⁾																	
	Diameter				Diameter													
Ì	82-2 (A)	Š, o ^c	°, ₀₀ 5	5/8 in	9T 16/32E)P				-	-	-	_	0	0	0	0	01
		₹, ₀°	°, ₀₀ 3	3/4 in	11T 16/32	DP				-	-	-	-	0	0	0	0	52
	101-2 (B)	Š, o ^c	°, ₀₀ 7	7/8 in	13T 16/32	DP				-	-	_	_	0	0	0	0	68
		ે, જ ⁰	°, ₀₀ 1	. in	15T 16/32	DP				-	-	-	_	0	0	0	0	04
			1	. 1/4 in	14T 12/24	DP				_	-	-	-	0	0	0	0	06
	127-4 (C)	23	1	. in	15T 16/32	DP					-	_	_	0	0	0	0	E2
- 1					_						1		T -					

Connector for solenoids

152-4 (D)

13	without, with hydraulic controllers	0
	HIRSCHMANN connector – without suppressor diode	Н

• = Available • = On request • = Not available

댔

었

1 1/4 in

1 1/2 in

1 3/4 in

14T 12/24DP

17T 12/24DP

13T 8/16DP

04

 $V_{g\;max}\!\!:$ Setting range $V_{g\;max}$ to 50% $V_{g\;max}$ stepless

 $\rm V_{g~min}$: Please specify setting range $\rm V_{g~min}$ to 40% $\rm V_{g~max}$ stepless, settings to be specified in plain text.

 $V_{g\ max}$ and $V_{g\ min}$ limitations on through drives with port plates 12K.. and 22U.. can only be carried out via fixed set values, this should also be specified in plain text.

- 4) See data sheet 95581 universal through drive
- 5) When ordering sizes 071 to 180 with port plate 22, please order the relevant through drive "U"

Example: A10VZO045DR000/10R-VSD22U01

When ordering sizes 018 to 045 with port plate 12, please order the relevant through drive **with** "K"

0 0 0

0 0

96

17

Example: A10VZO018DR000/10R-VSD12K01

- 6) Splined shaft according to ANSI B92.1a (splined shafts according to SAE J744)
- 7) Mounting holes pattern viewed on through drive with control at top www.hydrootvet.ru

 $_{
m 3)}$ A stepless mechanical flow control is only standard on version 12 N00 in sizes 018 to 140

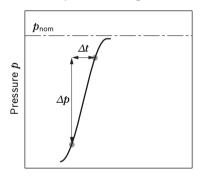
Preferred program A10VZO

Overview of common configurations

Type Material number A10VZ0003EZ400/10R-VSC14N00H R902557878 A10VZ0003DR000/10R-VSC14N000 R902557885 A10VZ0006EZ400/10R-VSC14N00H R902557879 A10VZ0006DR000/10R-VSC14N000 R902557886 A10VZ0008EZ400/10R-VSC14N00H R902557880 A10VZ0010EZ400/10R-VSC14N00H R902557887 A10VZ0010EZ400/10R-VSC14N00H R902544384 A10VZ0010DR000/10R-VSC14N000 R902557888 A10VZ0018EZ400/10R-VRC12N00H R902557889 A10VZ0028EZ400/10R-VRC12N00H R902557890 A10VZ0028DR000/10R-VRD12N000 R902557891 A10VZ0045EZ400/10R-VRD12N00H R902548677 A10VZ0071EZ400/10R-VRD12N00H R902557892
A10VZO006EZ400/10R-VSC14N00H R902557879 A10VZO006DR000/10R-VSC14N000 R902557886 A10VZO008EZ400/10R-VSC14N00H R902557880 A10VZO008DR000/10R-VSC14N000 R902557887 A10VZO010EZ400/10R-VSC14N00H R902544384 A10VZO010DR000/10R-VSC14N000 R902557888 A10VZO018EZ400/10R-VRC12N00H R902544060 A10VZO018DR000/10R-VRC12N000 R902557889 A10VZO028EZ400/10R-VRC12N00H R902547871 A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO006DR000/10R-VSC14N000 R902557886 A10VZO008EZ400/10R-VSC14N00H R902557880 A10VZO008DR000/10R-VSC14N000 R902557887 A10VZO010EZ400/10R-VSC14N00H R902544384 A10VZO010DR000/10R-VSC14N000 R902557888 A10VZO018EZ400/10R-VRC12N00H R902544060 A10VZO018DR000/10R-VRC12N000 R902557889 A10VZO028EZ400/10R-VRC12N00H R902547871 A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO008EZ400/10R-VSC14N00H R902557880 A10VZO008DR000/10R-VSC14N000 R902557887 A10VZO010EZ400/10R-VSC14N00H R902544384 A10VZO010DR000/10R-VSC14N000 R902557888 A10VZO018EZ400/10R-VRC12N00H R902544060 A10VZO018DR000/10R-VRC12N000 R902557889 A10VZO028EZ400/10R-VRC12N00H R902547871 A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO008DR000/10R-VSC14N000 R902557887 A10VZO010EZ400/10R-VSC14N00H R902544384 A10VZO010DR000/10R-VSC14N000 R902557888 A10VZO018EZ400/10R-VRC12N00H R902544060 A10VZO018DR000/10R-VRC12N000 R902557889 A10VZO028EZ400/10R-VRC12N00H R902547871 A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO010EZ400/10R-VSC14N00H R902544384 A10VZO010DR000/10R-VSC14N000 R902557888 A10VZO018EZ400/10R-VRC12N00H R902544060 A10VZO018DR000/10R-VRC12N000 R902557889 A10VZO028EZ400/10R-VRC12N00H R902547871 A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO010DR000/10R-VSC14N000 R902557888 A10VZO018EZ400/10R-VRC12N00H R902544060 A10VZO018DR000/10R-VRC12N000 R902557889 A10VZO028EZ400/10R-VRC12N00H R902547871 A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO018EZ400/10R-VRC12N00H R902544060 A10VZO018DR000/10R-VRC12N000 R902557889 A10VZO028EZ400/10R-VRC12N00H R902547871 A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO018DR000/10R-VRC12N000 R902557889 A10VZO028EZ400/10R-VRC12N00H R902547871 A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO018DR000/10R-VRC12N000 R902557889 A10VZO028EZ400/10R-VRC12N00H R902547871 A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO028EZ400/10R-VRC12N00H R902547871 A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO028DR000/10R-VRC12N000 R902557890 A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO045DR000/10R-VRD12N000 R902557891 A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO045EZ400/10R-VRD12N00H R902548677 A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO071EZ400/10R-VRD12N00H R902557881
A10VZO071DR000/10R-VRD12N000 R902557892
A10VZO100EZ400/10R-VSD12N00H R902557882
A10VZO100DR000/10R-VSD12N000 R902557893
A10VZO140EZ400/10R-VSD12N00H R902557883
A10VZO140DR000/10R-VSD12N000 R902557894
A10VZO180EZ400/10R-VSD22U00H R902557884
A10VZO180DR000/10R-VSD22U000 R902557895

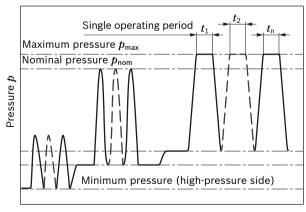
Please specify settings $V_{g\;min}$ and $V_{g\;max}$ in plain text.

Setting ranges stop $V_{g\;min}$ / $V_{g\;max}$


Size	V _{g min}	V _{g max}
3	0 to 3 cm ³ ; 0.9 cm ³ /U	3 cm ³
6	0 to 4 cm ³ ; 0.9 cm ³ /U	6 cm ³
8	0 to 4 cm ³ ; 0.9 cm ³ /U	8 cm ³
10	0 to 4 cm ³ ; 0.9 cm ³ /U	10 cm ³
18	0 to 8 cm ³ ; 1.1 cm ³ /U	9 to 18 cm ³ ; 1.1 cm ³ /U
28	0 to 12 cm ³ ; 1.6 cm ³ /U	14 to 28 cm ³ ; 1.6 cm ³ /U
45	0 to 18 cm ³ ; 3.2 cm ³ /U	25 to 45 cm ³ ; 3.2 cm ³ /U
71	0 to 28 cm ³ ; 4.7 cm ³ /U	45 to 71 cm ³ ; 4.7 cm ³ /U
100	0 to 40 cm ³ ; 6.2 cm ³ /U	50 to 100 cm ³ ; 6.2 cm ³ /U
140	0 to 56 cm ³ ; 7.1 cm ³ /U	70 to 140 cm ³ ; 7.1 cm ³ /U
180	_	-

Only fixed stop possible with size 18 to 140 for port plates with through drive.

Working pressure range A10VZO - size 3 to 10


Pressure at working port B		Definition
Nominal pressure p_{nom}	250 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p_{\max}	315 bar	The maximum pressure corresponds to the maximum working pres-
Single operating period	2.0 ms	sure within the single operating period. The sum of the single oper-
Total operating period	300 h	ating periods must not exceed the total operating period.
Minimum pressure $p_{\rm B~abs}$ (high-pressure side)	10 bar	Minimum pressure on the high-pressure side (B) which is required in order to prevent damage to the axial piston unit.
Rate of pressure change $R_{A\;max}$	16000 bar/s	Maximum permissible speed of pressure build-up and reduction during a pressure change across the entire pressure range.
Pressure at suction port S (inlet)		
Minimum pressure p_{Amin} Standard	0.8 bar absolute	Minimum pressure at suction port S (inlet) that is required in order to avoid damage to the axial piston unit. The minimum pressure depends on the rotational speed and displacement of the axial piston unit.
Maximum pressure $p_{\text{S max}}$	10 bar absolute	
Leakage pressure at port L, L ₁		
Maximum pressure $p_{\text{L max}}$	2 bar absolute ²⁾	Maximum 0.5 bar higher than inlet pressure at port $\bf S$, but not higher than $p_{\rm Lmax}$. A drain line to the reservoir is required.

▼ Rate of pressure change $R_{A \text{ max}}$

Time t

▼ Pressure definition

Time t

Total operating period = $t_1 + t_2 + ... + t_n$

Notice

Working pressure range valid when using hydraulic fluids based on mineral oils. Please contact us for values for other hydraulic fluids.

Flow direction

Direction of rotation, viewed on drive shaft	Direction of rotation	Flow
Type code " R "	Clockwise	S to B
	Counterclockwise ¹⁾	B to S
Type code " L "3)	Counterclockwise	S to B
	Clockwise ¹⁾	B to S

Only permissible in decompression operation, a pressure side switch is not permitted.

²⁾ Higher values on request

³⁾ Position S and B with counter-clockwise rotation, observe installation drawing www.hydrootvet.ru

Working pressure range A10VZO - size 18 to 45

Pressure at working port	В		Definition
Nominal pressure $p_{\sf nom}$		315 bar	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p_{max}		350 bar	The maximum pressure corresponds to the maximum working pres-
Single operating perio	d	2.5 ms	sure within the single operating period. The sum of the single oper-
Total operating period		300 h	ating periods must not exceed the total operating period.
Minimum pressure $p_{B\;abs}$ (high-pressure side)	10 bar ¹⁾	Minimum pressure on the high-pressure side (B) which is required in order to prevent damage to the axial piston unit.
Rate of pressure change R	A max	16000 bar/s	Maximum permissible speed of pressure build-up and reduction during a pressure change across the entire pressure range.
Pressure at suction port	S (inlet)		
Minimum pressure $p_{\text{S min}}$	Standard	0.8 bar absolute	Minimum pressure at suction port S (inlet) that is required in order to avoid damage to the axial piston unit. The minimum pressure depends on the rotational speed and displacement of the axial piston unit.
Maximum pressure $p_{\text{S max}}$		10 bar absolute	
Case pressure at port L, I	-1		
Maximum pressure $p_{\text{L max}}$		2 bar absolute ²⁾	Maximum 0.5 bar higher than inlet pressure at port $\bf S$, but not higher than $p_{\rm Lmax}$. A drain line to the reservoir is required.

For details of the rate of pressure change and pressure definition, please refer to page 27

Notice

Working pressure range valid when using hydraulic fluids based on mineral oils. Please contact us for values for other hydraulic fluids.

Flow direction

Direction of rotation, viewed on drive shaft	Direction of rotation	Flow
Type code " R "	Clockwise	S to B
	Counterclockwise ³⁾	B to S
Type code " L "	Counterclockwise	S to B
	Clockwise ³⁾	B to S

¹⁾ Please contact us about lower pressures.

²⁾ Higher values on request

³⁾ Only permissible in decompression operation, a pressure side switch is not permitted.

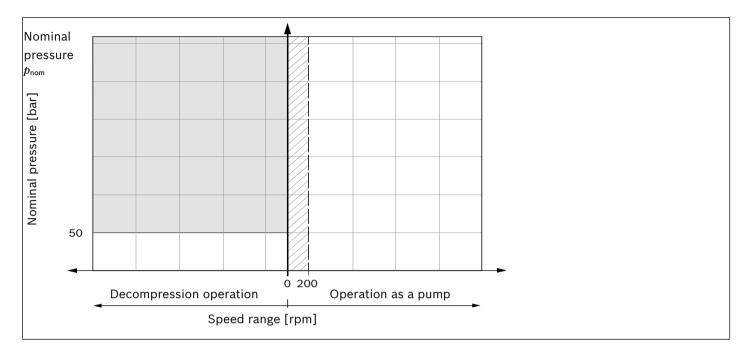
Working pressure range A10VZO - size 71 to 180

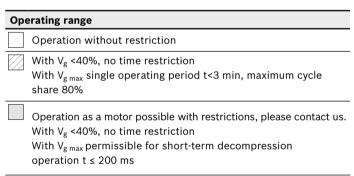
Pressure at working port B		Definition
Nominal pressure p_{nom}	280 bar ²⁾	The nominal pressure corresponds to the maximum design pressure.
Maximum pressure p_{max}	350 bar	The maximum pressure corresponds to the maximum working
Single operating period	2.5 ms	pressure within the single operating period. The sum of the single
Total operating period	300 h	operating periods must not exceed the total operating period.
Minimum pressure $p_{B\;abs}$ (high-pressure side	e) 10 bar	Minimum pressure on the high-pressure side (B) which is required in order to prevent damage to the axial piston unit.
Rate of pressure change $R_{A \text{ max}}$	16000 bar/s	Maximum permissible speed of pressure build-up and reduction during a pressure change across the entire pressure range.
Pressure at suction port S (inlet)		
Minimum pressure $p_{S min}$ Standard	0.8 bar absolute	Minimum pressure at suction port S (inlet) that is required in order to avoid damage to the axial piston unit. The minimum pressure depends on the rotational speed and displacement of the axial piston unit.
Maximum pressure $p_{\text{S max}}$	10 bar absolute	
Case pressure at port L, L ₁		
Maximum pressure $p_{\text{L max}}$	2 bar absolute ²⁾	Maximum 0.5 bar higher than inlet pressure at port $\bf S$, but not higher than $p_{\rm L\ max}$. A drain line to the reservoir is required.

For details of the rate of pressure change and pressure definition, please refer to page 27

Notice

Working pressure range valid when using hydraulic fluids based on mineral oils. Please contact us for values for other hydraulic fluids.


Flow direction


Direction of rotation, viewed on drive shaft	Direction of rotation	Flow
Type code " R "	Clockwise	S to B
	Counterclockwise ¹⁾	B to S
Type code "L"	Counterclockwise	S to B
	Clockwise ¹⁾	B to S

only permissible in decompression operation, a pressure side switch is not permitted.

²⁾ Higher values on request

A10VZO sizes 003 to 045: Permissible operating data and operating ranges

Technical data A10VZO size 3 to 45

Size		NG		3	6	8	10	18	28	45
Displacement, geometric, per revolution		$V_{g\;max}$	cm ³	3.5	6	8	10.5	18	28	45
Rotational speed maximum ¹⁾	at $V_{\rm g\; max}$									
Suction speed operation as a pump ¹⁾		n_{nom}	rpm	3600	3600	3600	3600	3300	3000	3000
Max. speed decompression operation ²⁾		n_{nom}	rpm	3600	3600	3600	3600	3300	3000	3000
Flow at n_{nom} and $V_{\text{g max}}$		q_{v}	l/min	12.6	21.6	28.8	38	59	84	135
Power	and Δp = 250 bar	P	kW	5	10	15	16	_	_	_
Operation as a pum at n_{nom} , $V_{g\;max}$	and Δp = 315 bar	P	kW	-	_	_	-	34	39	44
Torque	at $V_{\rm g\; max}$ and Δp = 250 bar	T	Nm	14	24	32	42	_	-	_
	at $V_{\rm g max}$ and Δp = 315 bar	T	Nm	_	_	_	_	90	140	225
	at $V_{\rm g max}$ and Δp = 100 bar	T	Nm	6	9	13	17	29	45	72
Rotary stiffness of	S	c	Nm/rad	8100	8100	8100	8100	_	_	_
drive shaft	R	c	Nm/rad	_	_	-	_	14800	3000 3000 84 - 39 - 140 45 - 26300 3 0.0017 11200 0.3 15 - 18	41000
Moment of inertia fo	r rotary group	$J_{\sf TW}$	kgm²	0.0006	0.0006	0.0006	0.0006	0.00093	0.0017	0.0033
Maximum angular ac	celeration ²⁾³⁾	α	rad/s²	14000	14000	14000	14000	12600	11200	9500
Case volume		V	I	0.2	0.2	0.2	0.2	0.25	0.3	1.0
Weight without through drive (14N00, 12N00 approx.)		m	kg	8	8	8	8	12	15	27
Weight without thro	ugh drive (22U00 approx.)	m	kg	-	_	-	_	-	_	-
Weight with through	drive (07K, 12Kapprox.)	m	kg	10.5	10.5	10.5	10.5	14	18	28
Weight with through	drive (22Uapprox.)	m	kg	_	_	_	_	_	_	_

Determining	the cha	ract	teristics		
Flow	$q_{\sf v}$	=	$\frac{V_{g} \times n \times \eta_{v}}{1000}$		[l/min]
Torque	Т	=	$\frac{V_{g} \times \Delta p}{20 \times \pi \times \eta_{hm}}$	-	[Nm]
Power	P	=	$\frac{2 \pi \times T \times n}{60000}$	$= \frac{q_{v} \times \Delta p}{600 \times \eta_{t}}$	[kW]

For further information on speed increase, see page 33

Key

 $V_{\rm g}$ Displacement per revolution [cm³]

 Δp Differential pressure [bar]

n Rotational speed [rpm]

 η_{v} Volumetric efficiency

 $\eta_{
m hm}$ Hydraulic-mechanical efficiency

 η_t Total efficiency ($\eta_t = \eta_v \times \eta_{hm}$)

Notice

- ► Theoretical values, without efficiency and tolerances; values rounded
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Bosch Rexroth recommends testing the load by means of experiment or calculation / simulation and comparison with the permissible values.
- 1) The values are applicable:
 - At absolute pressure $p_{\rm abs}$ = 1 bar at suction port **S**
 - For the optimal viscosity range of $v_{\rm opt}$ = 36 to 16 mm²/s
 - For hydraulic fluid based on mineral oils
- 2) Higher values on request
- 3) The limit value is only valid for a single pump, multiple pump version available on request. The load capacity of the connecting parts must be considered.

Technical data A10VZO size 71 to 180

Size		NG		71	100	140	180
Displacement, geom	etric, per revolution	$V_{g\;max}$	cm ³	71.1	100	140	180
Rotational speed maximum ¹⁾	at $V_{ m gmax}$						
Suction speed opera	ation as a pump ¹⁾	n_{nom}	rpm	2550	2300	2200	1800
Max. speed decomp	ression operation ²⁾	n_{nom}	rpm		On re	quest	
Flow	at n_{nom} and V_{gmax}	q_{v}	l/min	181	230	308	324
Power pump operation at n_{nom} , $V_{\text{g max}}$	and Δp = 280 bar	P	kW	84	107	143	151
Torque	at $V_{\rm g\; max}$ and Δp = 280 bar	T	Nm	317	445	623	801
	at $V_{\rm gmax}$ and Δp = 100 bar	T	Nm	113	159	223	286
Rotary stiffness of	S	с	Nm/rad	=	121142	169537	171107
drive shaft	R	с	Nm/rad	76545	_	-	-
Moment of inertia fo	r rotary group	$J_{\sf TW}$	kgm²	0.0087	0.0185	0.0276	0.033
Maximum angular ac	celeration ²⁾³⁾	α	rad/s²	7500	6200	5000	4000
Case volume		V	1	1.6	2.2	3.0	2.7
Weight without thro approx.)	ugh drive (12N00, 42N00	m	kg	36.5	55	70	-
Weight without thro	ugh drive (22U00 approx.)	m	kg	47	69	73	78
Weight with through	drive (12Kapprox.)	m	kg	-	_	_	-
Weight with through	drive (22Uapprox.)	m	kg	47	69	73	78

Determining th	e cha	ract	eristics		
Flow	q_{v}	=	$\frac{V_{g} \times n \times \eta_{v}}{1000}$		[l/min]
Torque	Т	=	$\frac{V_{g} \times \Delta p}{20 \times \pi \times \eta_{hm}}$		[Nm]
Power	P	=	$\frac{2 \pi \times T \times n}{60000}$	$= \frac{q_{v} \times \Delta p}{600 \times \eta_{t}}$	[kW]

For further information on speed increase, see page 33

Key

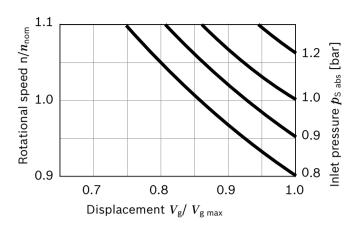
 $V_{\rm g}$ Displacement per revolution [cm³]

 Δp Differential pressure [bar]

n Rotational speed [rpm]

 η_{v} Volumetric efficiency

 η_{hm} Hydraulic-mechanical efficiency

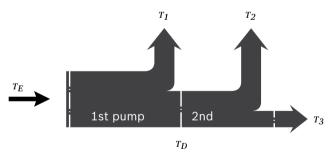

 η_t Total efficiency ($\eta_t = \eta_v \times \eta_{hm}$)

Notice

- ► Theoretical values, without efficiency and tolerances; values rounded
- ▶ Operation above the maximum values or below the minimum values may result in a loss of function, a reduced service life or in the destruction of the axial piston unit. Bosch Rexroth recommends testing the load by means of experiment or calculation / simulation and comparison with the permissible values.
- 1) The values are applicable:
 - At absolute pressure $p_{\rm abs}$ = 1 bar at suction port **S**
 - For the optimal viscosity range of ν_{opt} = 36 to 16 mm²/s
 - For hydraulic fluid based on mineral oils
- 2) Higher values on request
- 3) The limit value is only valid for a single pump, multiple pump version available on request. The load capacity of the connecting parts must be considered.
- 4) With port plates 7 or 14

Minimum permissible inlet pressure at suction port S with speed increase

In order to avoid damage to the pump (cavitation), a minimum inlet pressure must be guaranteed at suction port **S**. The minimum inlet pressure level depends on the rotational speed and the displacement of the variable pump.



During continuous operation in overspeed over n_{nom} , a reduction in operational service life is to be expected due to cavitation erosion.

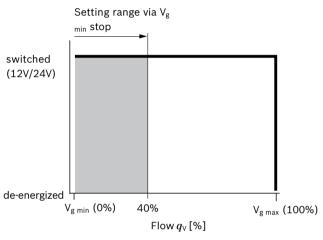
Permissible input and through-drive torques

Size				003 to 10	18	28	45	71	100	140	180
Input torque											
at drive shaft, maximum ²⁾	S	T_{Emax}	Nm	126	-	-	-	-	1104	1620	1620
		Ø	in	3/4	-	-	_	_	1 1/2	1 3/4	1 3/4
	R	T_{Emax}	Nm	_	160	250	400	650	_	_	_
		Ø	in	_	3/4	7/8	1	1 1/4	_	_	_
Maximum through-drive to	rque										
	S	T_{Dmax}	Nm	41	-	_	-	_	778	1266	1266
	R	T_{Dmax}	Nm	_	92	127	229	480	_	_	_

▼ Distribution of torques

Torque at 1st pump	T_1		
Torque at 2nd pump	T_2		
Torque at 3rd pump	T_3		
Input torque	T_E	=	$T_1 + T_2 + T_3$
	T_E	<	T_{Emax}
Through-drive torque	T_D	=	$T_2 + T_3$
	T_D	<	T_{Dmax}

Efficiency not considered

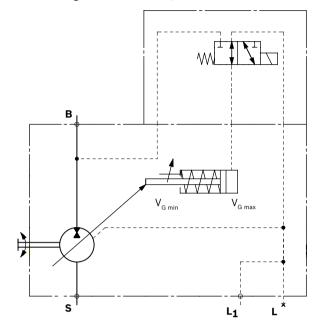

²⁾ For drive shafts with no radial force

EZ300/EZ400 - Two-point control, electric

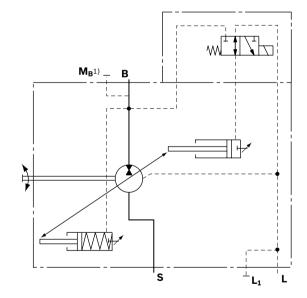
The variable displacement unit is set to minimum swivel angle by actuating switching solenoid. The control pressure is taken internally from the high-pressure side. A minimum system pressure depending on the operating data is required for the pump to be adjusted (please contact us). The axial piston unit can only be switched between $V_{g\ max}$ and $V_{g\ min}$.

Please specify the pre-setting in plain text.

▼ Characteristic curve EZx00



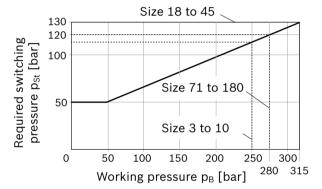
 $\begin{array}{cccc} \text{De-energized} & & \triangleq & V_{g \; \text{max}} \\ \text{Current switch on} & & \triangleq & V_{g \; \text{min}} \end{array}$


Technical data, solenoid	EZ300	EZ400
Voltage	12 V (±15%)	24 V (±15%)
Position V _{g max}	de-energized	de-energized
Position V _{g min}	Current switched	Current switched
	on	on
Nominal current at 20 °C	1.5 A	0.8 A
Duty cycle	100%	100%
Type of protection: see co	nnector version page	102

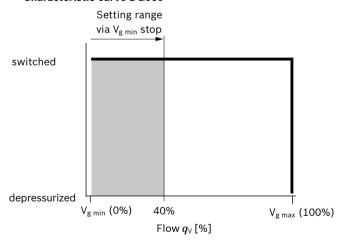
Ambient temperature range -20 °C to +60 °C. If these temperatures cannot be complied with, please contact us

▼ Circuit diagram A10VZO...EZ3/4 sizes 3 to 10

▼ Circuit diagram A10VZO...EZ3/4 sizes 18 to 180

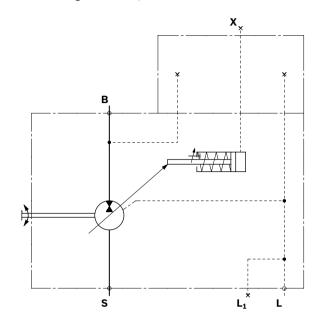

DG000 - Two-point control, hydraulic

The variable pump can be set to a minimum swivel angle by connecting an external switching pressure to port \mathbf{X} . This will supply control fluid directly to the stroking piston; a minimum pressure of $p_{st} \geq 50$ bar is required. The variable pump can only be switched between $V_{g \, min}$ and $V_{g \, max}$. Please specify the pre-setting in plain text. Please note, that the required switching pressure at port \mathbf{X} is directly dependent on the actual working pressure p_{B} at port \mathbf{B} . (See switching pressure characteristic curve).

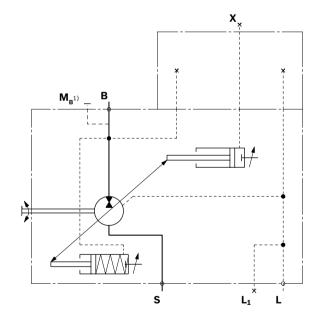

The maximum permissible switching pressure corresponds to the nominal pressure of the pump.

- ► Switching pressure p_{St} in X= 0 bar \triangleq $V_{g max}$
- ► Switching pressure p_{St} in $X \ge 50$ bar $\triangleq V_{g min}$

▼ Switching pressure characteristic curve



▼ Characteristic curve DG000



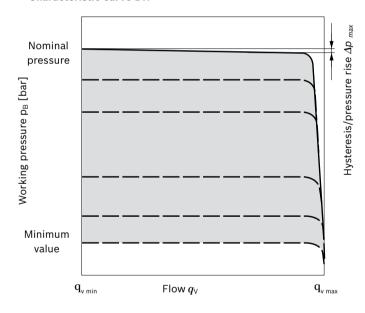
 $\begin{array}{lll} \text{Depressurized} & \triangleq & V_{g \; max} \\ \text{Pressure switch on} & \triangleq & V_{g \; min} \end{array}$

▼ Circuit diagram DG000; A10VZO sizes 3 to 10

▼ Circuit diagram DG000; A10VZ0 sizes 18 to 180

DR - Pressure controller

The pressure controller limits the maximum pressure at the pump outlet within the control range of the variable pump. The variable pump only supplies as much hydraulic fluid as is required by the consumers. If the working pressure exceeds the pressure command value at the pressure control valve, the pump will regulate to a smaller displacement to reduce the control differential.

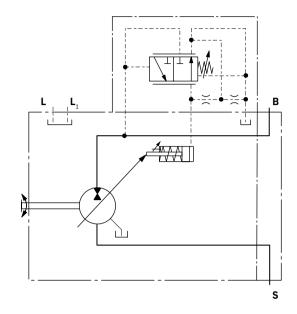

- ▶ Initial position in depressurized state: $V_{g \text{ max}}$.
- ► Setting range¹⁾ for pressure control, see characteristic curve DR and table.

Notice

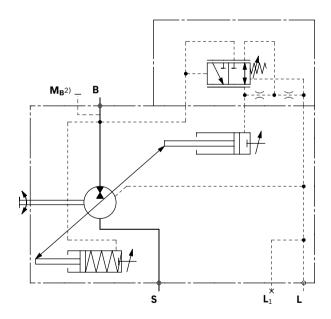
► The described function is only available in the selected direction of rotation (type code R/L). Please contact us regarding switching the direction of rotation

•

▼ Characteristic curve DR


Characteristic curve valid at n_1 = 1500 rpm and θ_{fluid} = 50 °C.

Setting range pressure controller


NG	10	18 to 45	71 to 180
Nominal pressure/ maximum value	250	315	280 ³⁾
Minimum value	20	60	60

- In order to prevent damage to the pump and the system, the permissible setting range must not be exceeded.
 The range of possible settings at the valve is higher.
- 2) Only port plate 22
- 3) Higher value on request

▼ Circuit diagram DR nominal size 3 to 10

▼ Circuit diagram DR nominal size 18 to 180

Controller data DR

NG		10	18	28	45	71	100	140	180
Pressure increase	∆ <i>p</i> [bar]	4	4	4	6	8	10	12	12
Hysteresis and repeat- ability	<i>∆p</i> [bar]	maxi	mum	3					
Pilot fluid consump- tion	[I/min]	maxi	mum	appro	x. 3				

DRG - Pressure controller, remote controlled

For the remote controlled pressure controller, the LS pressure limitation is performed using a separately arranged pressure relief valve. Therefore any pressure control value under the pressure set on the pressure controller can be regulated. Pressure controller DR see page 36.

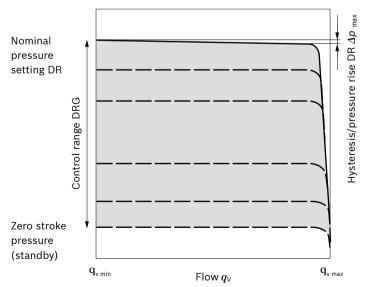
A pressure relief valve is externally piped to port **X** for remote control. This relief valve is not included in the scope of delivery of the DRG control.

When there is differential pressure of 20 bar Δp (standard setting), the quantity of control fluid at the port is **X** approx. 1.5 l/min. If a different setting (range 10 to 22 bar) is required, please state in plain text.

As a separate pressure relief valve (1) we recommend:

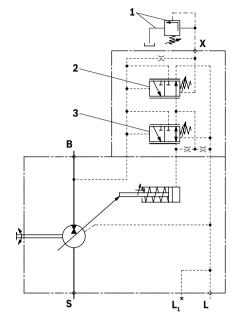
► A direct operated, hydraulic or electric proportional one, suitable for the control fluid mentioned above.

The max. length of piping should not exceed 2 m.

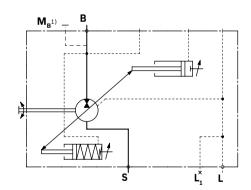

- ▶ Basic position in depressurized state: $V_{g \text{ max}}$.
- Setting range for differential pressure 10 to 22 bar standard is 20 bar.

Unloading port **X** to the reservoir results in a zero stroke (standby) pressure which is approx. 1 to 2 bar higher than the defined differential pressure Δp , however system influences are not taken into account.

Notice


► The described function is only available in the selected direction of rotation (type code R/L). Please contact us regarding switching the direction of rotation

▼ Characteristic curve DRG


Characteristic curve valid at n_1 = 1500 rpm and θ_{fluid} = 50 °C.

▼ Circuit diagram DRG A10VZO sizes 3 to 10

- **1** The separate pressure relief valve and the line are not included in the scope of delivery.
- 2 Remote controlled pressure cut-off (G)
- 3 Pressure controller (DR)

▼ Circuit diagram base unit A10VZO sizes 18 to 180; valve setup, see sizes 3 to 10

Controller data DRG

NG		10	18	28	45	71	100	140	180
Hysteresis and repeat- ability	Δp [bar]	max	imum	3					
Pilot fluid	[I/min]	max	imum	appro	x. 4.5				
consump-									
tion DR and									
DRG									

¹⁾ Only port plate 22

LA.D - Pressure and torque controller

Pressure controller equipped like DR, see page 36. In order to achieve a constant drive torque, the swivel angle of the axial piston pump is varied depending on the working pressure so that the drive torque remains constant. When ordering please state the torque characteristics to be set at the factory in plain text, e.g. 50 Nm.

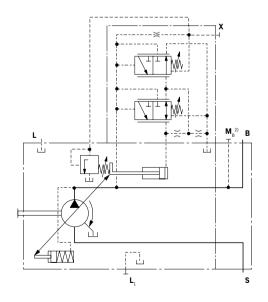
Notice

► The described function is only available in the selected direction of rotation (type code R/L). Please contact us regarding switching the direction of rotation

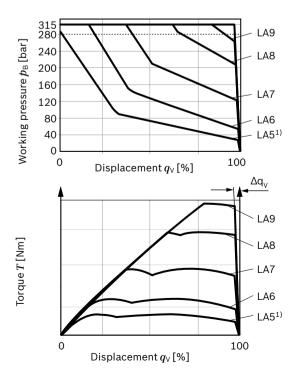
Controller data

For technical data of pressure controller DR see page 36. Pilot fluid consumption max. approx. 5.5 I/min

Reference values	Torque T [Nm	orque T [Nm] for size								
Beginning of control	18	28	45	71	100	140	180	Order code		
up to 50 bar	up to 17.0	up to 26.0	up to 42.0	up to 67.0	up to 94.0	up to 132.0	up to 170.0	LA5 ¹⁾		
50 to 90	17.1 × 30.0	26.1 × 47.0	42.1 × 76.0	67.1 × 121.0	94.1 × 169.0	132.1 × 237.0	170.1 × 305.0	LA6		
91 to 160	30.1 × 54.0	47.1 × 84.0	76.1 × 134.0	121.1 × 213.0	169.1 × 299.0	237.1 × 418.0	305.1 × 537.0	LA7		
161 to 240	54.1 × 81.0	84.1 × 126.0	134.1 × 202.0	213.1 × 319.0	299.1 × 449.0	418.1 × 629.0	537.1 × 809.0	LA8		
over 240	over 81.1	over 126.1	over 202.1	over 319.1	over 449.1	over 629.1	over 809.1	LA9		


Conversion of the torque values in power [kW]

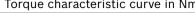
$$P = \frac{T}{6.4}$$
 [kW] (at 1500 rpm)

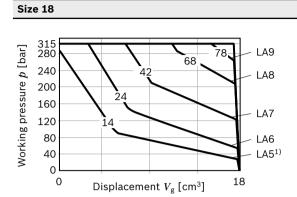

$$P = \frac{2 \times T \times n}{60000}$$
 [kW

(For rotational speeds see page 31 onwards)

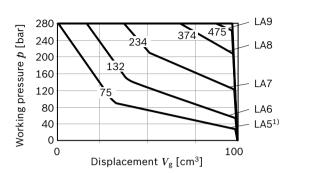
▼ Circuit diagram LA.D

▼ Characteristic curve LA.D

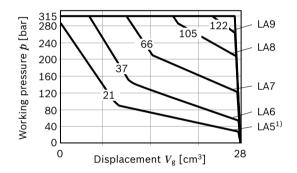


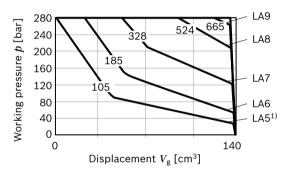

¹⁾ Please contact us.

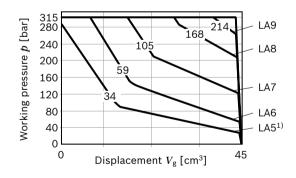
²⁾ Only with port plate 22

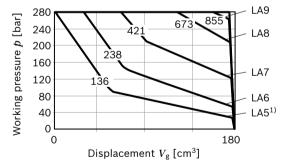

LA.D - Pressure and torque controller, characteristic curve

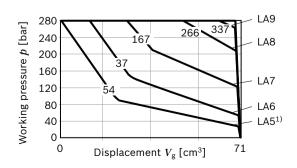
Torque characteristic curve in Nm



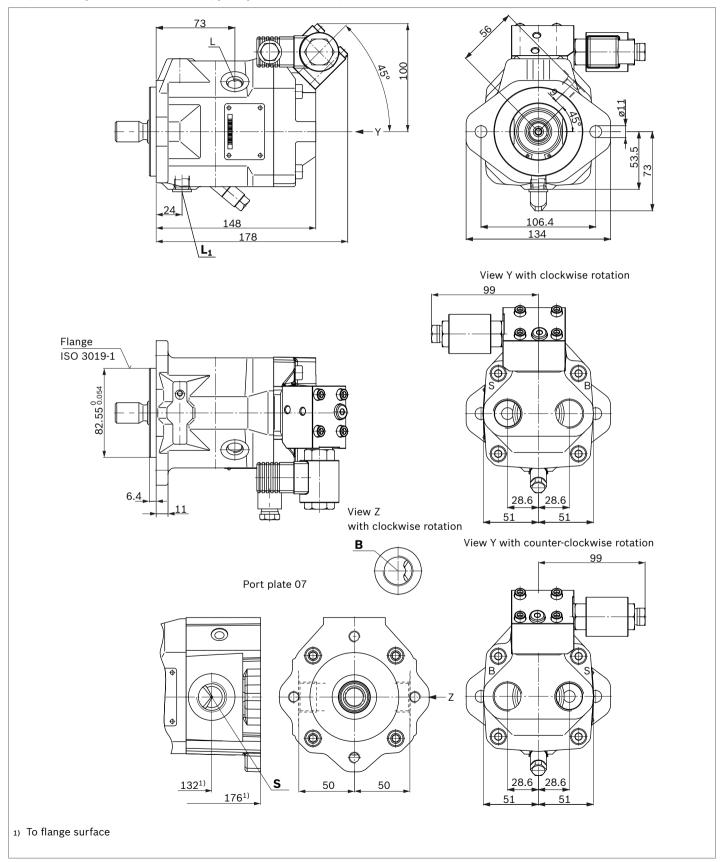

Size 100

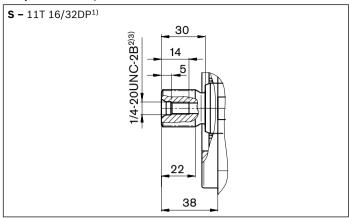

Size 28


Size 140


Size 45

Size 180


Size 71


¹⁾ Please contact us.

Dimensions A10VZO sizes 3 to 10

EZ3/4 - Two-point control electric, port plate 14 and 07, clockwise rotation

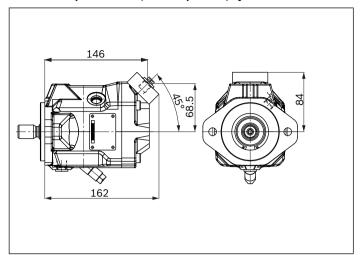
▼ Splined shaft 3/4 in SAE J744

Ports		Standard	Size ⁴⁾	$p_{max\;abs}$ [bar] ⁵⁾	State ⁹⁾
В	Working port (standard pressure series)	DIN 3852	M27 × 2; 16 deep	315	0
S	Suction port (standard pressure series)	DIN 3852	M27 × 2; 16 deep	5	0
L	Drain port	ISO 11926 ⁷⁾	9/16-18UNF-2B; 10 deep	2	O ⁸⁾
L ₁	Drain port	ISO 11926 ⁷⁾	9/16-18UNF-2B; 10 deep	2	X ₈₎
Х	Pilot pressure port	ISO 11926	7/16-20UNF-2B; 11.5 deep	315	0
Х	Pilot pressure port with DG	DIN ISO 228	G 1/4	315	0

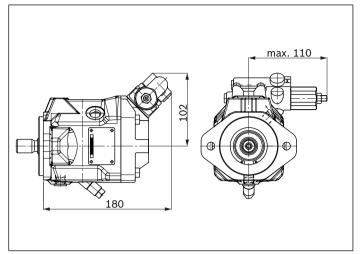
- 3) Thread according to ASME B1.1
- 4) For notes on tightening torques, see the instruction manual.
- 5) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

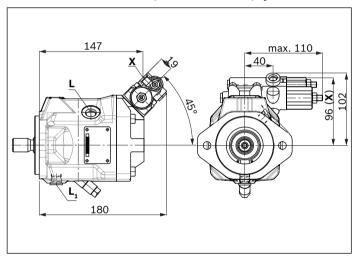
Splines according to ANSI B92.1a, spline runout is a deviation from standard.


⁶⁾ Metric fastening thread is a deviation from standard.

⁷⁾ The countersink can be deeper than as specified in the standard.

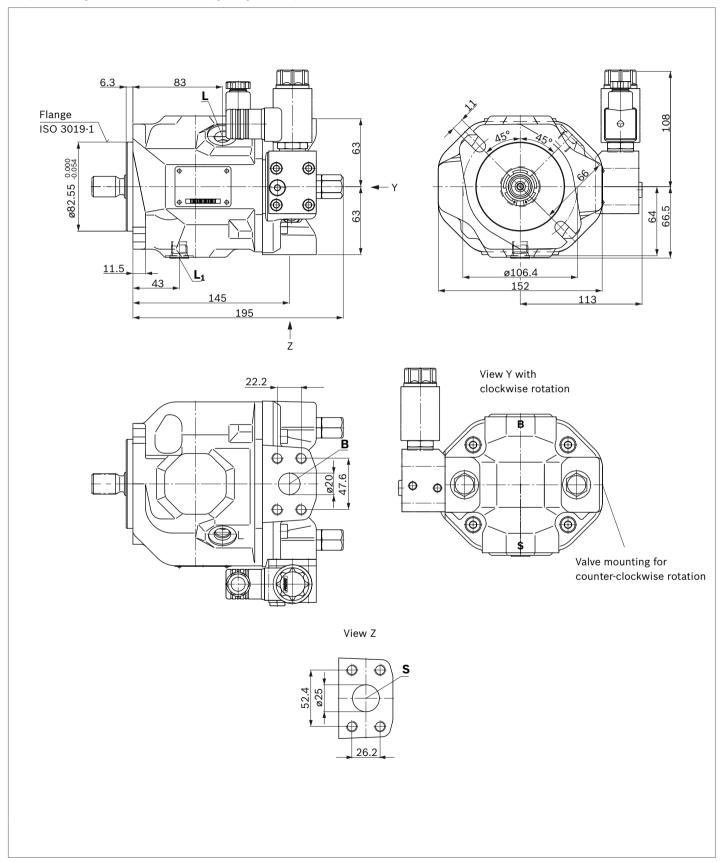

⁸⁾ Depending on the installation position, L or L₁ must be connected (also see installation instructions starting on page 103).

⁹⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)

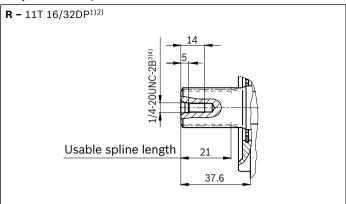

▼ DG - Two-point control, direct operated, hydraulic

▼ DR - Pressure controller, hydraulic

▼ DRG - Pressure controller, remote controlled, hydraulic



Notice


Valve mounting for counter-clockwise rotation see overall dimensions on page 40.

Dimensions A10 VZO size 18

EZ3/4 - Two-point control electric, port plate 12, clockwise rotation

▼ Splined shaft 3/4 in SAE J744

Ports		Standard	Size ⁴⁾	p _{max abs} [bar] ⁵⁾	State ⁹⁾
В	Working port (standard pressure series)	SAE J518 ⁶⁾	3/4 in	350	0
	Fastening thread	DIN 13	M10 × 1.5; 17 deep		
S	Suction port (standard pressure series)	SAE J518 ⁶⁾	1 in	10	0
		DIN 13	M10 × 1.5; 17 deep		
L	Drain port	ISO 11926 ⁷⁾	9/16-18UNF-2B; 10 deep	2	O ⁸⁾
L ₁	Drain port	ISO 11926 ⁷⁾	9/16-18UNF-2B; 10 deep	2	X ₈₎
х	Pilot pressure port	ISO 11926	7/16-20UNF-2B; 11.5 deep	350	0
Х	Pilot pressure port (DG only)	DIN ISO 228 ⁷⁾	G1/4; 12 deep	350	0

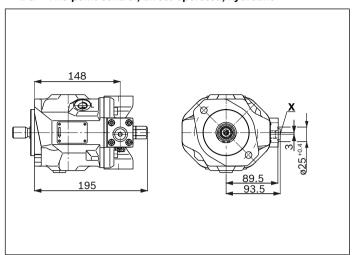
Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Splines according to ANSI B92.1a, spline runout is a deviation from standard.

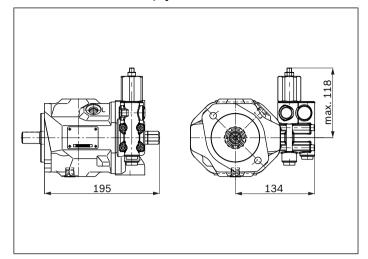
³⁾ Thread according to ASME B1.1

⁴⁾ For notes on tightening torques, see the instruction manual.

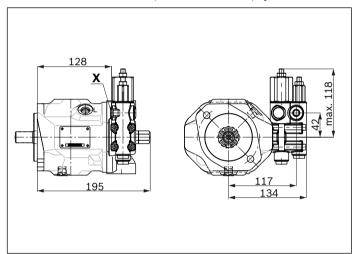
⁵⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

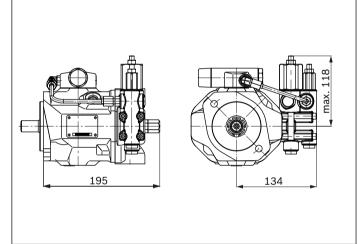

⁶⁾ Metric fastening thread is a deviation from standard.

⁷⁾ The countersink can be deeper than as specified in the standard.


⁸⁾ Depending on the installation position, L or L_1 must be connected (also see installation instructions starting on page 103).

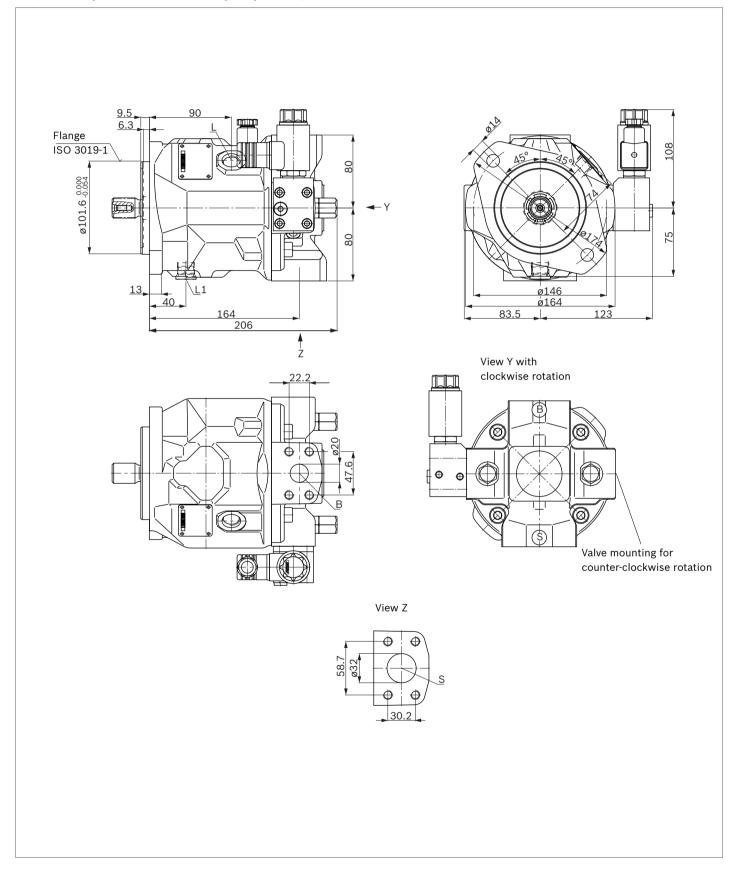
⁹⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)


▼ DG - Two-point control, direct operated, hydraulic

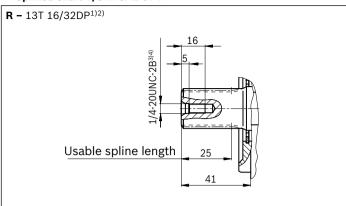

▼ DR - Pressure controller, hydraulic

▼ DRG - Pressure controller, remote controlled, hydraulic

▼ LAxD - Torque controller, hydraulic



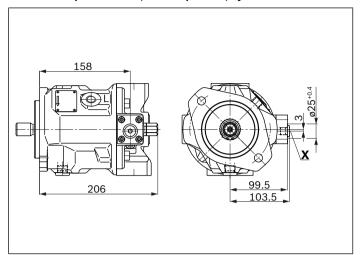
Notice


Valve mounting for counter-clockwise rotation see overall dimensions on page 43.

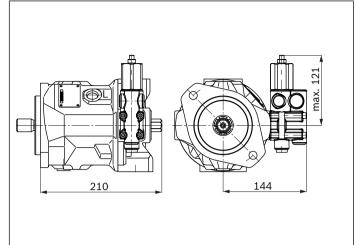
Dimensions A10VZO size 28

EZ3/4 - Two-point control electric, port plate 12, clockwise rotation

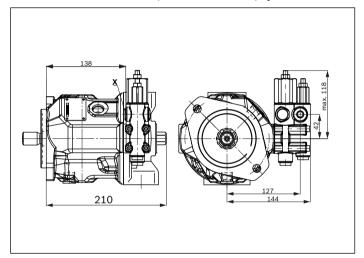
▼ Splined shaft 7/8 in SAE J744

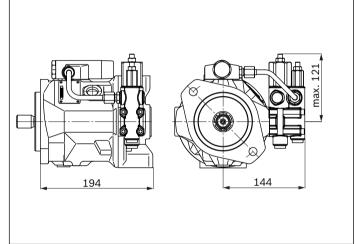

Ports		Standard	Size ⁴⁾	p_{maxabs} [bar] $^{5)}$	State ⁹⁾
В	Working port (standard pressure series)	SAE J518 ⁶⁾	3/4 in	350	0
	Fastening thread	DIN 13	M10 × 1.5; 17 deep		
S	Suction port (standard pressure series)	SAE J518 ⁶⁾	1 1/4 in	10	0
		DIN 13	M10 × 1.5; 17 deep		
L	Drain port	ISO 11926 ⁷⁾	3/4-16UNF-2B; 12 deep	2	O ⁸⁾
L ₁	Drain port	ISO 11926 ⁷⁾	3/4-16UNF-2B; 12 deep	2	X ⁸⁾
X	Pilot pressure port	ISO 11926	7/16-20UNF-2B; 11.5 deep	350	0
X	Pilot pressure port (DG only)	DIN ISO 2287)	G1/4; 12 deep	350	0

- 3) Thread according to ASME B1.1
- 4) For notes on tightening torques, see the instruction manual.
- 5) Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.
- 6) Metric fastening thread is a deviation from standard.
- 7) The countersink can be deeper than as specified in the standard.
- 8) Depending on the installation position, L or L_1 must be connected (also see installation instructions starting on page 103).
- 9) O = Must be connected (plugged when delivered)X = Plugged (in normal operation)


¹⁾ Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

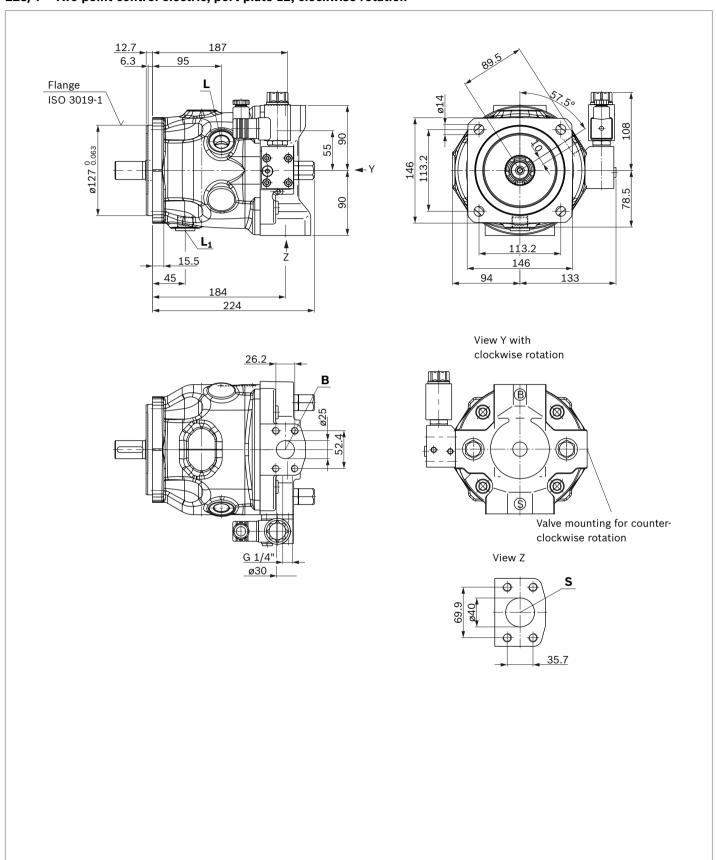
²⁾ Splines according to ANSI B92.1a, spline runout is a deviation from standard.


▼ DG - Two-point control, direct operated, hydraulic

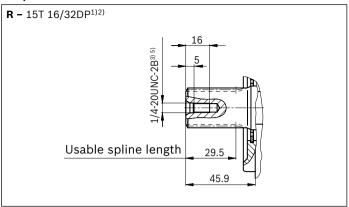

▼ DR - Pressure controller, hydraulic

▼ DRG - Pressure controller, remote controlled, hydraulic

▼ LAxD - Torque controller, hydraulic



Notice


Valve mounting for counter-clockwise rotation see overall dimensions on page 46.

Dimensions A10VZO size 45

EZ3/4 - Two-point control electric, port plate 12, clockwise rotation

▼ Splined shaft 1 in SAE J744

Ports		Standard	Size ⁴⁾	$p_{max\;abs}$ [bar] $^{5)}$	State ⁹⁾
В	Working port (standard pressure series)	SAE J518 ⁶⁾	1 in	350	0
	Fastening thread	DIN 13	M10 × 1.5; 17 deep		
S	Suction port (standard pressure series)	SAE J518 ⁶⁾	1 1/2 in	10	0
		DIN 13	M12 × 1.75; 20 deep		
L	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 14 deep	2	O ₈₎
L ₁	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 14 deep	2	X ₈₎
Х	Pilot pressure port	ISO 11926	7/16-20UNF-2B; 11.5 deep	350	0
Х	Pilot pressure (only on DG)	DIN ISO 228 ⁷⁾	G1/4; 12 deep	350	0

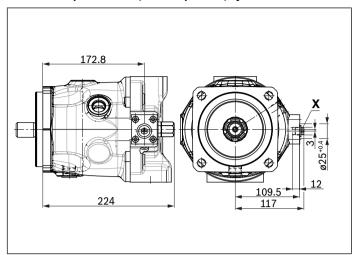
¹⁾ Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

Splines according to ANSI B92.1a, spline runout is a deviation from standard.

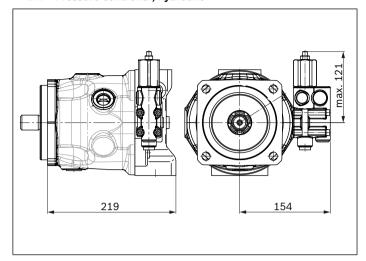
³⁾ Thread according to ASME B1.1

⁴⁾ For notes on tightening torques, see the instruction manual.

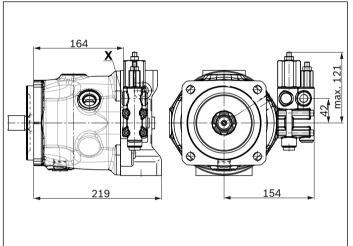
⁵⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

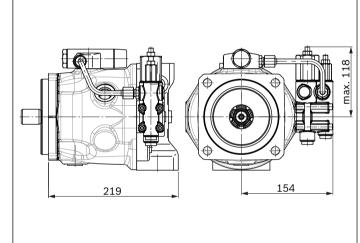

⁶⁾ Metric fastening thread is a deviation from standard.

⁷⁾ The countersink can be deeper than as specified in the standard.


⁸⁾ Depending on the installation position, L or L_1 must be connected (also see installation instructions starting on page 103).

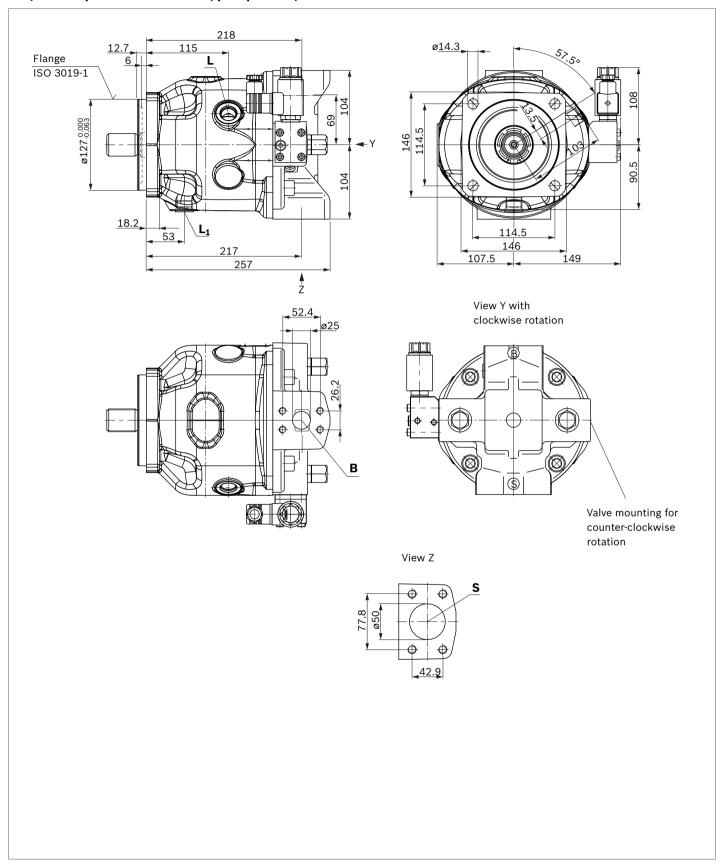
⁹⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)


▼ DG - Two-point control, direct operated, hydraulic

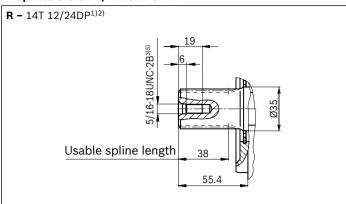

▼ DR - Pressure controller, hydraulic

▼ DRG - Pressure controller, remote controlled, hydraulic

▼ LAxD - Torque controller, hydraulic



Notice


Valve mounting for counter-clockwise rotation see overall dimensions on page 49.

Dimensions A10VZO size 71

EZ3/4 - Two-point control electric, port plate 12, clockwise rotation

▼ Splined shaft 1 1/4 in SAE J744

Ports		Standard	Size ⁴⁾	p _{max abs} [bar] ⁵⁾	State ⁹⁾
В	Working port (standard pressure series) Fastening thread	SAE J518 ⁶⁾ DIN 13	1 in M10 × 1.5; 17 deep	350	0
S	Suction port (standard pressure series)	SAE J518 ⁶⁾ DIN 13	2 in M12 × 1.75; 20 deep	10	0
L	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 14 deep	2	O ⁸⁾
L ₁	Drain port	ISO 11926 ⁷⁾	7/8-14UNF-2B; 14 deep	2	X ⁸⁾

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

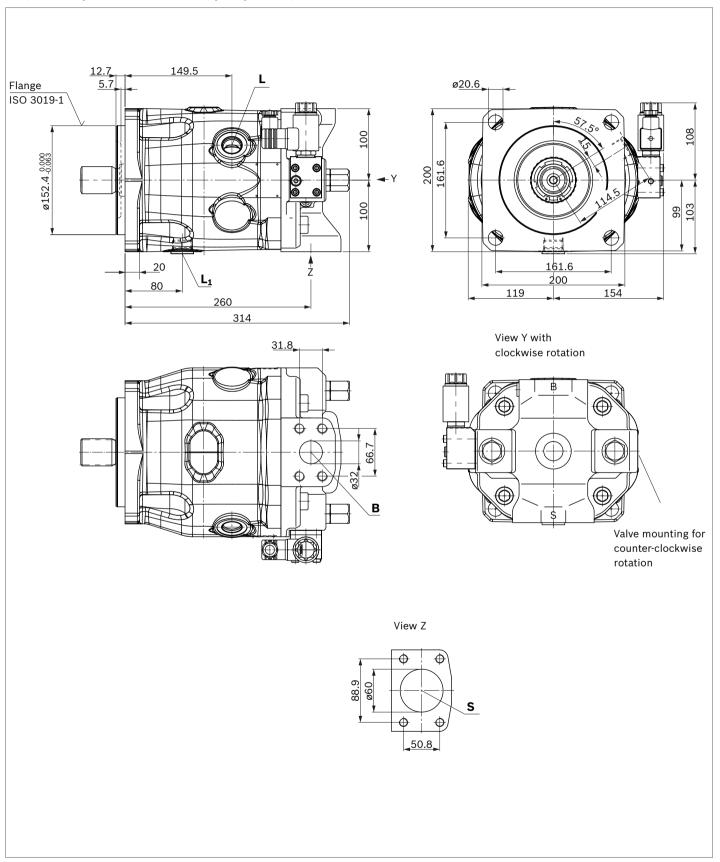
²⁾ Splines according to ANSI B92.1a, spline runout is a deviation from standard.

³⁾ Thread according to ASME B1.1

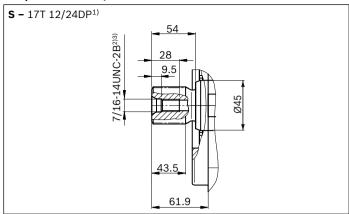
⁴⁾ For notes on tightening torques, see the instruction manual.

⁵⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

⁶⁾ Metric fastening thread is a deviation from standard.


⁷⁾ The countersink can be deeper than as specified in the standard.

⁸⁾ Depending on the installation position, L or L_1 must be connected (also see installation instructions starting on page 103).


⁹⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)

Dimensions A10VZO size 100

EZ3/4 - Two-point control electric, port plate 12, clockwise rotation

▼ Splined shaft 1 1/2 in SAE J744

Ports		Standard	Size ³⁾	$p_{maxabs}[bar]^{4)}$	State ⁸⁾
В	Working port (standard pressure series) Fastening thread	SAE J518 ⁵⁾ DIN 13	1 1/4 in M14 × 2; 19 deep	350	0
S	Suction port (standard pressure series)	SAE J518 ⁵⁾ DIN 13	2 1/2 in M12 × 1.75; 17 deep	10	0
L	Drain port	ISO 11926 ⁶⁾	1 1/16-12UNF-2B; 16 deep	2	O ⁷⁾
L ₁	Drain port	ISO 11926 ⁶⁾	1 1/16-12UNF-2B; 16 deep	2	X ⁷⁾

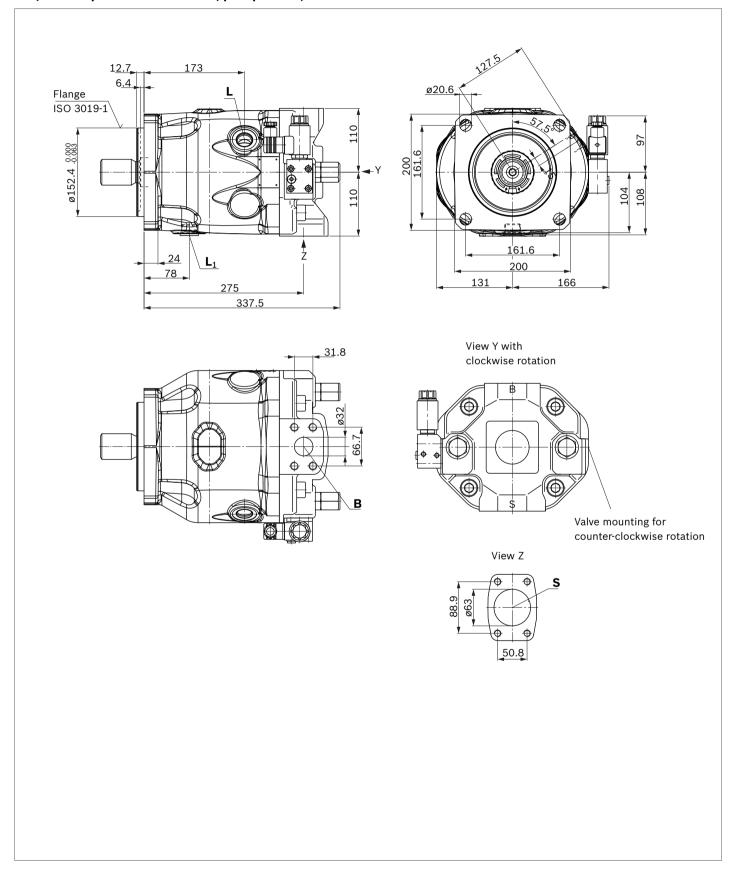
Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

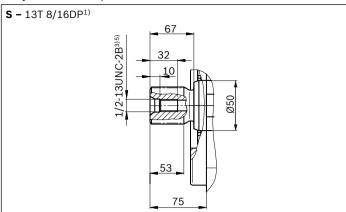
³⁾ For notes on tightening torques, see the instruction manual.

⁴⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

⁵⁾ Metric fastening thread is a deviation from standard.


⁶⁾ The countersink can be deeper than as specified in the standard.

⁷⁾ Depending on the installation position, L or L_1 must be connected (also see installation instructions starting on page 103).


⁸⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)

Dimensions A10VZO size 140

EZ3/4 - Two-point control electric, port plate 12, clockwise rotation

▼ Splined shaft 1 3/4 in SAE J744

Ports		Standard	Size ³⁾	p_{maxabs} [bar] $^{4)}$	State ⁸⁾
В	Working port (high-pressure series) Fastening thread	SAE J518 ⁵⁾ DIN 13	1 1/4 in M14 × 2; 19 deep	350	0
S	Suction port (high-pressure series)	SAE J518 ⁵⁾ DIN 13	2 1/2 in M12 × 1.75; 17 deep	10	0
L	Drain port	ISO 11926 ⁶⁾	1 1/16-12UNF-2B; 16 deep	2	O ⁷⁾
L ₁	Drain port	ISO 11926 ⁶⁾	1 1/16-12UNF-2B; 16 deep	2	X ⁷⁾

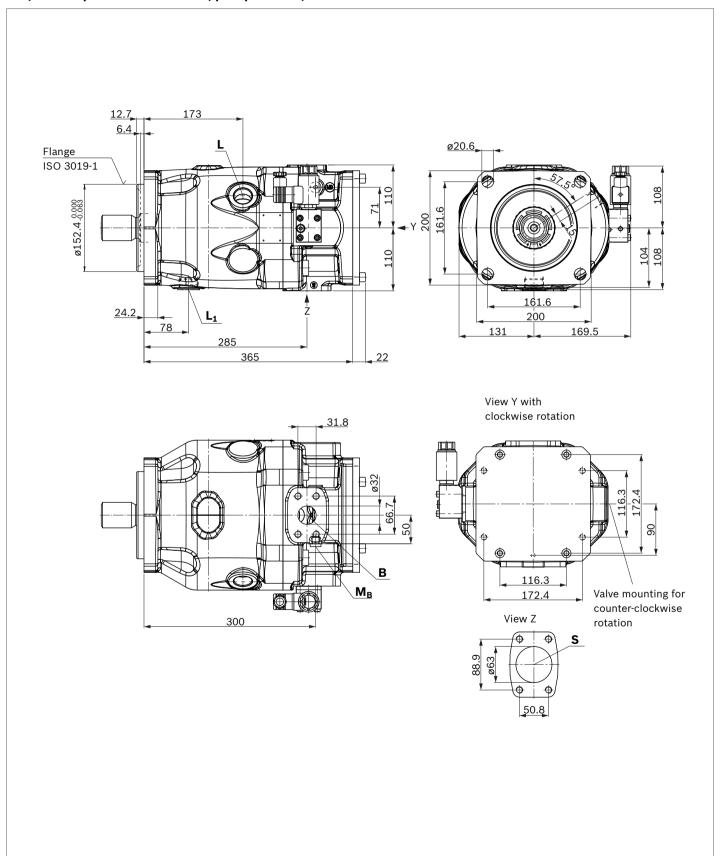
Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

³⁾ For notes on tightening torques, see the instruction manual.

⁴⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

⁵⁾ Metric fastening thread is a deviation from standard.


⁶⁾ The countersink can be deeper than as specified in the standard.

⁷⁾ Depending on the installation position, L or L_1 must be connected (also see installation instructions starting on page 103).

⁸⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)

Dimensions A10VZO size 180

EZ3/4 - Two-point control electric, port plate 22U, clockwise rotation

▼ Splined shaft 1 3/4 in SAE J744

Ports		Standard	Size ³⁾	p_{maxabs} [bar] $^{4)}$	State ⁸⁾
В	Working port (high-pressure series) Fastening thread	SAE J518 ⁵⁾ DIN 13	1 1/4 in M14 × 2; 19 deep	350	0
S	Suction port (high-pressure series)	SAE J518 ⁵⁾ DIN 13	2 1/2 in M12 × 1.75; 17 deep	10	0
L	Drain port	ISO 11926 ⁶⁾	1 5/16-12UNF-2B; 15 deep	2	O ⁷⁾
L ₁	Drain port	ISO 11926 ⁶⁾	1 5/16-12UNF-2B; 15 deep	2	X ⁷⁾
Мв	Measuring port, high pressure	DIN 3852-2 ⁶⁾	G 1/4 in; 12 deep	350	X

Involute spline according to ANSI B92.1a, 30° pressure angle, flat root, side fit, tolerance class 5

²⁾ Thread according to ASME B1.1

³⁾ For notes on tightening torques, see the instruction manual.

⁴⁾ Depending on the application, momentary pressure peaks can occur. Keep this in mind when selecting measuring devices and fittings.

⁵⁾ Metric fastening thread is a deviation from standard.

⁶⁾ The countersink can be deeper than as specified in the standard.

⁷⁾ Depending on the installation position, L or L_1 must be connected (also see installation instructions starting on page 103).

⁸⁾ O = Must be connected (plugged when delivered)X = Plugged (in normal operation)