

Proportional directional cartridge valve, pilotoperated, with integrated electronics (OBE) or external control electronics

Type 2WFC and 2WFCE

RE 29403 Edition: 2018-09 www.hydrootvet.ru

Features

- 2/2-way version
- Cartridge valve
- Robust
 - Pressure resistance up to 420 bar
 - High vibration resistance (acc. to DIN EN60068-2)
 - Ambient temperature up to +60 °C
- Precise
 - High response sensitivity and little hysteresis
- Reliable
 - High-quality and proven design
- Normalized
 - Installation dimensions according to ISO 7368
 - Connectors/interfaces
- Flexible
 - In connection with a pressure compensator pressurecompensated flow control possible
- Safe
 - Fail-safe position of the main stage in case of power failure, cable break or disconnected enable

- ▶ Size 16 ... 50
- Component series 1X
- Maximum operating pressure 420 bar
- ► Maximum flow 1500 l/min (**Δp** = 5 bar)
- ► CE according to EMC Directive 2014/30/EU

CE

Contents

Features	1
Ordering code	2,3
Symbols	3
Function, section, symbol	4
Technical data	5,6
Integrated electronics (OBE)	7,8
Electrical connections and assignment	9
Characteristic curves	10 19
Dimensions	20 23
Installation bore	22
Dimensions	23
Accessories	24
Further information	24

Ordering code

01	02	03	04	05	06	07		80		09		10	11	12	13
2	WFC			S		L	-	1X	1		/				*

01	2 main ports	2
02	Pilot-operated proportional directional valve (cartridge valve)	WFC
03	With external control electronics	no code
	With integrated electronics (OBE)	E
04	Size 16	16
	Size 25	25
	Size 32	32
	Size 40	40
	Size 50	50
05	Seat control spool	S

Rated flow at 5 bar pressure differential

06	- Size 16	
	125 l/min ¹⁾	125
	160 l/min ²⁾	160
	- Size 25	
	220 l/min ¹⁾	220
	330 l/min ²⁾	330
	- Size 32	
	320 l/min ¹⁾	320
	650 l/min ²⁾	650
	- Size 40	
	500 l/min ¹⁾	500
	940 l/min ²⁾	940
	- Size 50	
	1000 l/min ¹⁾	1000
	1500 l/min ²⁾	1500

Flow characteristic

07	Linear	L
08	Component series 10 19 (10 19: unchanged installation and connection dimensions)	1X

Seal material

09	NBR seals	м
	FKM seals	V
	Observe compatibility of seals with hydraulic fluid used. (Other seals upon request)	

Electrical connection (version "With external control electronics")

10	Connector 3-pole (2 + PE) according to DIN EN 175301-803	K4 ^{3; 4)}
11	Without supply voltage (version "With external control electronics")	no code
	Supply voltage 24 V (With integrated electronics (OBE) "E")	24

Ordering code

2	WFC			S		L	_	1X	/		1				*
01	02	03	04	05	06	07		08		09		10	11	12	13

Electrical interface (With integrated electronics (OBE) "E")

12	0 10 V DC (connector 6+PE)	A1 ³⁾
	0 10 V DC (connector 11+PE)	B1 ³⁾
	4 20 mA (connector 11+PE)	G1 ³⁾
13	Further details in the plain text	*

- ¹⁾ Control spool Linear (standard)
- ²⁾ Control spool Linear-Progressive
- ³⁾ Mating connectors, separate order, see page24 and data sheet 08006.
- ⁴⁾ External control electronics, see page 24.

Symbols

With external control electronics "2WFC"	With integrated electronics (OBE) "2WFCE"

IF Notes:

- Representation according to DIN ISO 1219-1.
- Direction of flow
 - A \rightarrow B (X connected to A)
 - B \rightarrow A (X connected to B)

Function, section

Set-up

The pilot-operated proportional directional cartridge valve type 2WFC(E) basically consists of:

- ► Cover (1)
- Main stage (2)
- ▶ Pilot control valve with proportional solenoid (3)
- Integrated electronics with position transducer and analog interface (4) or external control electronics as module amplifier

The electronics (integrated or external) compare the specified command value to the position actual value of the control spool of the main stage (2). In case of control deviations, the solenoid of the pilot control valve (3) is activated. In this way, the control spool is adjusted. Depending on the control deviation, the control chamber of the main stage (2) is either pressurized with pilot oil (the main stage closes) or unloaded (the main stage opens). Stroke and orifice cross-section are controlled proportionally to the command value until the control deviation is remedied.

For proper function, the following has to be observed:

- Direction of flow $A \rightarrow B$ (X connected to A)
- Direction of flow $B \rightarrow A$ (X connected to B)
- Port Y depressurized to the tank

Failure of supply voltage

If the minimum supply voltage fails or is fallen below, the enable is disconnected (only interfaces B1 and G1) and in case of a cable break of the solenoid conductor, the electronics will de-energize the solenoid of the pilot control valve (3). The control spool of the main stage (2) moves securely to its seat using the pressure available at port X and the force of the main stage spring and blocks the flow between A and B.

Flow control function

In connection with a pressure compensator, the pilotoperated proportional directional cartridge valve can be used for the pressure-compensated control of a flow.

Technical data

(For applications outside these parameters, please consult us!)

general									
Size		NG	16	25	32	40	50		
Weight > Ty	pe 2WFC	kg	3.3	4.4	5.6	7.7	10.3		
► Ty	pe 2WFCE	kg	3.5	4.6	5.8	7.9	10.5		
Installation position		any							
Ambient temperature range		°C	-30 +60 (-20 +60 (NBR seals) FKM seals)					
Maximum storage time		Years	1 (if the stor instructions	rage conditior 07600-B)	is are observe	ed; refer to the	e operating		
Vibration resistance Si	ne test according to DIN EN 60068	-2-6	10 2000 H	lz / maximum	of 10 g / 10 d	cycles / 3 axes	;		
► No	bise test according to DIN EN 6006	8-2-64	20 2000 H	lz / 10 g _{RMS} /	30 g peak / 3	0 min. / 3 axe	S		
► Tr	ansport shock according to DIN EN 6	60068-2-27	15 g / 11 ms	s / 3 axes					
Maximum relative humidity	no condensation)	%	95						
Maximum surface temperate	ire (solenoid coil)	°C	150						
$MTTF_{d}$ value according to Effective to Effect the second seco	I ISO 13849	Years	75 (for furth	er details see	data sheet 0	8012)			
hydraulic									
Maximum operating pressur	e ► Port A. B	bar	420						
Minimum operating pressure	Port A (A \rightarrow B) ¹⁾	bar	12						
	▶ Port B (B \rightarrow A) ¹)	bar	20						
Maximum pilot pressure	► Port X	bar	420						
Maximum return flow pressu	re ► Port Y ¹⁾	bar	100	·					
Rated flow	▶ Linear	l/min	125	220	320	500	1000		
(Δp = 5 bar ²⁾)	► Linear-Progressive	l/min	160	330	650	940	1500		
Maximum pilot flow ³⁾	_	l/min	3	5	7	9	9		
Leakage flow	► Pilot control valve (at 100 bar)	cm³/min	< 150	< 200	< 200	< 400	< 400		
	► Main stage								
	- Interface A1 (0 V) ^{5; 6)}	cm³/min	n $ A \rightarrow B$ and $B \rightarrow A$ blocked in a leakage-free manner (valve in seat position)						
	– Interface B1 (0 V)	B1 (0 V) cm ³ /min depending on <i>Ap</i> , see characteristic curves on page 1019							
	– Interface G1 (4 mA)	cm³/min	depending o	n Δp , see cha	racteristic cur	ves on page 1	019		
	- Interface B1, G1 ^{4; 5; 6)}	cm³/min	$A \rightarrow B$ and $B -$	A blocked in a	leakage-free ma	anner (valve in s	eat position)		
Pilot volume	Main stage ²⁾	cm ³	1	2.7	6.4	12.6	24.5		
Direction of flow	Pilot oil supply internal ¹⁾								
	- A → B		A connected	to X					
	$- B \rightarrow A$		B connected	to X					
	Pilot oil supply external ¹								
	$- A \rightarrow B$		Pressure in >	< ≥ pressure ir	ו A				
	$- B \rightarrow A$		Pressure in X ≥ pressure in B						
Hydraulic fluid			see table page 6						
Viscosity range	► Recommended	mm²/s	20 100						
	Maximum admissible	mm²/s	15 380						
Hydraulic fluid temperature	range (flown-througn)	°C	-20 +60	(10.7)					
fluid; cleanliness class acco	rding to ISO 4406 (c)		Class 18/16/	(13 /)					
 Counter pressure in port to the tank. Elow for deviating Ap: 	/; values correspond to Y depressu	rized 5)	Pilot oil supply internal: Observe leakage flow $A \rightarrow X$ or $B \rightarrow X$ via pilot control valve to Y (see technical data leakage flow – pilot						
$\boldsymbol{q}_{x} = \boldsymbol{q}_{Vnom} \times \sqrt{\frac{\boldsymbol{\Delta}\boldsymbol{p}_{x}}{5}}$		6)	Pilot oil supp control valve 30 cm ³ /min	oly external: L is avoided; a is, however, p	eakage flow f minimum lea ossible	rom A or B via kage flow X →	the pilot B up to		
 Stepped input signal (sea 100 bar) 	position at 100%, pilot pressure	7)	The cleanline adhered to in faults and si	ess classes sp n hydraulic sy multaneously	ecified for the stems. Effecti increases the	e components ive filtration p life cycle of t	s must be revents he		

⁴⁾ Pin 3: 0 V (release not set, see page 8)

Available filters can be found at wwwwww.wydrecotvett.r.com/filter.

components.

Technical data

(For applications outside these parameters, please consult us!)

Hydraulic fluid		Classification	Suitable sealing materials	Standards	Data sheet
Mineral oils		HL, HLP, HLPD, HVLP, HVLPD	NBR, FKM	DIN 51524	90220
Bio-degradable	► Insoluble in water	HETG	FKM	100 15000	
		HEES	FKM	150 15380	90221
	► Soluble in water	HEPG	FKM	ISO 15380	
Flame-resistant	► Water-free	HFDU (glycol base)	FKM		90222
		HFDU (ester base)	FKM	ISO 12922	
		HFDR	FKM		
	► Containing water	HFC (Fuchs Hydrotherm 46M, Fuchs Renosafe 500, Petrofer Ultra Safe 620, Houghton Houghto Safe 620, Union Carbide HP5046)	NBR	ISO 12922	90223

Important information on hydraulic fluids:

- ► For further information and data on the use of other hydraulic fluids, please refer to the data sheets above or contact us.
- There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.).
- The ignition temperature of the hydraulic fluid used must be 50 K higher than the maximum surface temperature.
- Bio-degradable and flame-resistant containing water: wlf components with galvanic zinc coating or parts containing zinc are used, small amounts of dissolved zinc may get into the hydraulic system and cause accelerated aging of the flame-resistant hydraulic fluid. Zinc soap may form as a chemical reaction product, which may clog filters, nozzles or solenoid valves - particularly in connection with local heat input.

► Flame-resistant – containing water:

- Due to increased cavitation tendency with HFC hydraulic fluids, the life cycle of the component may be reduced by up to 30% as compared to the use with mineral oil HLP. In order to reduce the cavitation effect, it is recommended - if possible specific to the installation - to back up the return flow pressure in ports T to approx. 20% of the pressure differential at the component.
- Dependent on the hydraulic fluid used, the maximum ambient and hydraulic fluid temperature must not exceed 50 °C. In order to reduce the heat input into the component, the command value profile is to be adjusted for proportional and high-response valves.

static /dynamic	
Hysteresis %	< 0.2
Range of inversion %	< 0.1
Response sensitivity %	< 0.1
Manufacturing tolerance q _{Vmax} (control spool Linear) %	≤ 10
Temperature drift %/40 K	< 1
Zero compensation	ex plant ±1%

electrical, integrated electronics (OBE)					
Relative duty cycle		%	100 (continuous operation)		
Protection class accordin	g to EN 60529		IP 65 with mating connector mounted and locked		
Supply voltage	Nominal voltage	VDC	24		
	Lower limit value	VDC	18		
	 Upper limit value 	VDC	36		
	 Maximum admissible residual ripple 	Vpp	2.5 (Comply with absolute supply voltage limit value)		
Current consumption	► Maximum	А	2		
	► Impulse current	А	3		
Maximum power consum	otion	W	50		
Functional ground and sc	reening		see connector pin assignment (CE-compliant installation) page 9		
Required fuse protection,	external	А	2.5 time-lag		
Adjustment			calibrated in the plant, see characteristic curves page 10 19		
Conformity			 CE according to EMC directive 2014/30/EU, tested according to EN 61000-6-2 and EN 61000-6-3 RoHS directive 2015/65/EU REACH ordinance (EC) no. 1907/2006 www.hydrootvet.ru 		

Integrated electronics (OBE)

Function

1. Switch-on procedure/Fault behavior

After applying the supply voltage of 24 V, the electronics are ready for operation provided that the following conditions are met:

- Supply voltage U_B > 18 V DC
- Connection to solenoid not interrupted
- Command value line not interrupted and command value > 2.7 mA (interface "G1" only)

If one of the conditions is not met, the controllers and the output stage will be blocked and the ready for operation signal to pin 11 (interface "B1" and "G1" only) will be set to 0 V.

2. Actual value output signals

- Electrical interfaces "A1" (pin F) and "B1" (pin 6)
 - "A1": 0.35 V ... +10 V corresponds to 0% ... 100% valve opening; control spool in seat position if actual value < -2.5 V
 - "B1": 0 V ... +10 V corresponds to 0% ... 100% valve opening; control spool in seat position if actual value < -1.5 V
- ► Electrical interface "G1" (pin 6)
 - 4 mA ... 20 mA corresponds to 0% ... 100% valve opening; control spool in seat position if actual value < 2.7 mA

Block diagram/controller function block: Version 6 + PE

I Notes:

- Electrical interface "A1"
 - in opening direction: Valve active if command value \ge 0.5 V
 - in closing direction: Valve deactivated if command value
 ≤ 0.3 V ("on seat")
- Electrical interfaces "B1" and "G1"
- in opening direction: Valve active if enable pin 3 is set, command value > -1 V ("B1") or > 2 mA ("G1")
- in closing direction: Valve deactivated if enable pin 3 is not set, command value < -1 V ("B1") or < 2 mA ("G1") ("on seat")

Command value	"B1" and "G1"	"A1"
Without enable	Ý	_
0 V	⊥ ⊤	Ý
>0 V 0,35 V		
>0,35 V <0,5 V		⊥ т
>0,5 V)(

Block diagram/controller function block: Version 11 + PE

IF Notes:

- ► Electrical interface "A1"
 - in opening direction: Valve active if command value ≥ 0.5 V
 - in closing direction: Valve deactivated if command value < 0.3 V ("on seat")
- ▶ Electrical interfaces "B1" and "G1"
 - in opening direction: Valve active if enable pin 3 is set, command value > -1 V ("B1") or > 2 mA ("G1")
 - in closing direction: Valve deactivated if enable pin 3 is not set, command value < -1 V ("B1") or < 2 mA ("G1") ("on seat")

Command value	"1" and "G1"	"A1"
Without enable	4	-
0 V	⊥ ⊤	4
>0 V 0,35 V		
>0,35 V <0,5 V)(⊥ ⊤
>0,5 V)(

Electrical connections and assignment

P	Pin	Core marking 1)	g 1) Interface assignment				
6 + PE	11 + PE		"A1" (6 + PE)	"B1" (11 + PE)	"G1" (11 + PE)		
А	1	1	Supply voltage 24 VDC				
В	2	2		GND			
С	3	3	Reference potential actual value	(high ≥ 12 V; low ≤5 V)			
D	4	4	Command va	lue 0 10 V	Command value 420 mA		
E	5	5	R	eference potential command valu	e		
F	6	6	Actual valu	Actual value 4 20 mA			
	7	7	Reference pot		ntial actual value		
	8	8	-				
	9	9	-				
	10	10	-				
	11	11	 Switching output 24 V – - -1 V)/error (0 V) or pow 		free operation (supply voltage cuit signal), maximum 50 mA		
PE	PE	green-yellow	Functional gr	ound (directly connected to the v	alve housing)		
			$ \begin{array}{c} $		10 6 11 7 PE 8		

Connector pin assignment

¹⁾ Core marking of the connection lines for mating connector with cable set, see accessories, page 24.

Characteristic curves: Size 16 (measured with HLP46, **9**_{oil} = 40 ±5 °C)

- 1 Pressure differential 20 bar
- 2 Pressure differential 10 bar
- **3** Pressure differential 5 bar

Characteristic curves: Size 16 (measured with HLP46, **9**_{0il} = 40 ±5 °C)

Characteristic curves: Size 25 (measured with HLP46, **9**_{oil} = 40 ±5 °C)

- 1 Pressure differential 20 bar
- 2 Pressure differential 10 bar
- **3** Pressure differential 5 bar

Characteristic curves: Size 25 (measured with HLP46, **9**_{oil} = 40 ±5 °C)

www.hydrootvet.ru RE 29403, edition: 2018-09, **Bosch Rexroth AG**

Characteristic curves: Size 32 (measured with HLP46, **9**_{oil} = 40 ±5 °C)

- 1 Pressure differential 20 bar
- 2 Pressure differential 10 bar
- **3** Pressure differential 5 bar

Characteristic curves: Size 32 (measured with HLP46, **9**_{0il} = 40 ±5 °C)

www.hydrootvet.ru RE 29403, edition: 2018-09, **Bosch Rexroth AG**

Characteristic curves: Size 40 (measured with HLP46, **9**_{0il} = 40 ±5 °C)

- 1 Pressure differential 20 bar
- 2 Pressure differential 10 bar
- **3** Pressure differential 5 bar

Characteristic curves: Size 40 (measured with HLP46, **9**_{0il} = 40 ±5 °C)

www.hydrootvet.ru RE 29403, edition: 2018-09, **Bosch Rexroth AG**

Characteristic curves: Size 50 (measured with HLP46, **9**_{oil} = 40 ±5 °C)

- 1 Pressure differential 20 bar
- 2 Pressure differential 10 bar
- **3** Pressure differential 5 bar

Characteristic curves: Size 50 (measured with HLP46, **9**_{0il} = 40 ±5 °C)

www.hydrootvet.ru RE 29403, edition: 2018-09, **Bosch Rexroth AG** **Dimensions:** With integrated electronics (OBE) "E" (dimensions in mm)

NG	B1	B2	H1	H2	H3	L1	L2	L3	L4	ØD1	ØD2
16	65	47	286	215	56	32.5	83	175	42	24	32
25	85	47	302	231	72	42.5	93	175	42	34	45
32	100	-	315	244	85	50	100	175	42	45	60
40	125	-	335	264	105	62.5	125	190	45	55	75
50	140	-	352	281	122	70	140	190	38	68	90

Notice:

The dimensions are nominal dimensions which are subject to tolerances.

Item explanations and valve mounting screws see page 23.

(dimensions in mm)

NG	B1	H3	L1	L2	L4	L5	ØD1	ØD2
16	65	56	32.5	83	42	36	24	32
25	85	72	42.5	93	42	36	34	45
32	100	85	50	100	42	36	45	60
40	125	105	62.5	125	45	42	55	75
50	140	122	70	140	38	46.5	68	90

Notice:

The dimensions are nominal dimensions which are subject to tolerances.

Item explanations and valve mounting screws

see page 23.

Installation bore

(dimensions in mm)

¹⁾ Bore center at ØD3 max.

²⁾ Control dimension

motunation	annensie			100 10	
NG	16	25	32	40	50
ØD1H7	32	45	60	75	90
ØD2	16	25	32	40	50
ØD3	16	25	32	40	50
max. ØD3	25	32	40	50	63
ØD4H7	25	34	45	55	68
D5	M8	M12	M16	M20	M20
max. ØD6	4	6	8	8	10
ØD7H13	4	6	6	6	8
H1	34	44	52	64	72
H1 ¹⁾	29.5	40.5	48	59	65.5
H2	56	72	85	105	122
НЗ	43	58	70	87	100
H4	20	25	35	45	45
min. H5	11	12	13	15	17
H6	2	2.5	2.5	3	3
min. H7	20	30	30	30	35
Н8	2	2.5	2.5	3	4
min. H9 ²⁾	0.5	1	1.5	2.5	2.5
min. H10	8	8	8	8	8
L1	65	85	100	125	140
L2	83	93	100	125	140
L3	32.5	42.5	50	62.5	70
L4	46	58	70	85	100
L5	25	33	41	50	58
L6	10.5	16	17	23	30
L7	23	29	35	42.5	50

NG	Installation dimensions according to DIN ISO 7368
16	ISO 7368-BA-06-2-A
25	ISO 7368-BB-08-2-A
32	ISO 7368-BC-09-2-A
40	ISO 7368-BD-10-2-A
50	ISO 7368-BE-11-2-A

Tolerances according to: General tolerances ISO 2768-mK

Item explanations and valve mounting screws see page 23.

Installation dimensions according to DIN ISO 7368

Dimensions

- 1 Cover
- 2 Main stage
- 3.1 Name plate NG16
- 3.2 Name plate NG25 ... 40
- 3.3 Name plate NG50
- 4 Pilot control valve with proportional solenoid
- **5.1** Integrated electronics with position transducer and analog interface
- **5.2** External control electronics with position transducer. Mating connectors for valves with "M12" connector (separate order, see page 24 and data sheet 08006)
- 6 Space required for removing the mating connectors
- 7.1 Mating connectors/cable set for valves with round connector (separate order, see page 24 and data sheet 08006)
- **7.2** Mating connectors for valves with "K4" connector (separate order, see page 24 and data sheet 08006)
- 8 Port X
- 9 Port Y
- 10 Locating hole for locking pin
- 11 Depth of fit

- 12 Control dimension
- **13** Port B may be at any position around the central axis of port A. However, it must be observed that the mounting bores and the control bores are not damaged.
- **14** If a different diameter is used for port B than indicated in the dimensional table, the distance from the cover support surface to the bore center must be calculated.

Valve	mounting	screws	(senarate	order)
vaive	mounting	SCIEWS	Separate	uuer)

Size	Hexagon socket head cap screws	Material number
16	4 hexagon socket head cap screws ISO 4762 - M8 x 30 - 10.9 tightening torque M_A = 35 ±5 Nm	R913022205
25	4 hexagon socket head cap screws ISO 4762 - M12 x 40 - 10.9 tightening torque M_A = 105 ±15 Nm	R913022052
32	4 hexagon socket head cap screws ISO 4762 - M16 x 50 - 10.9 tightening torque M_A = 265 ±25 Nm	R913015664
40	4 hexagon socket head cap screws ISO 4762 - M20 x 60 - 10.9 tightening torque M_A = 500 ±50 Nm	R913022102
50		

Accessories (separate order)

Mating connectors and cable sets

Item 1)	Designation	Version	Short designation	Material number	Data sheet
5.2	Mating connectors;	straight, PG7	4PZ24	R900773042	08006
	for sensors and valves with	straight, PG9		R900031155	
	"M12 x 1" connector, 4-pole	angled, PG7		R900779509	
		angled, PG9		R900082899	
7.1	Mating connector;	straight, metal	7PZ31M	R900223890	
	for valves with round connector, 6-pole + PE and 6-pole	straight, plastic	7PZ31K	R900021267	
	Cable sets; for valves with round connector, 6-pole + PE	Plastic, 3.0 m	7P Z31 BF6	R901420483	
		Plastic, 5.0 m		R901420491	
		Plastic, 10.0 m		R901420496	
	Mating connector;	Metal, shielded	12PN11 EMC	R901268000	1
	for valves with round connector, 11-pole + PE	Plastic, two cable outlets	12PN112XD8	R900884671	
	Cable sets;	Metal, shielded, 5.0 m	12PN11REFS EMCBG	R901272854	
	For valves with round connector,	Metal, shielded, 20.0 m		R901272852	
	11-pole + PE	Plastic, shielded, 5.0 m	12PN11REFF 2X	R900032356	
		Plastic, shielded, 20.0 m		R900860399	
7.2	Mating connector;	Without circuitry, 12 240 V, "a"	Z4	R901017010	
	for valves with "K4" connector, 2-pole + PE, design A	Without circuitry, 12 240 V, "b"		R901017011	

¹⁾ See dimensions page 20 and 21.

External control electronics

	Designation	Version	Material no.	Data sheet
Modular design	VT-MRPA1-2X	Command value 0 10 V	R901476413	30220
		Command value 4 20 mA	R901476414	

Further information

- Hydraulic fluids on mineral oil basis
- Environmentally compatible hydraulic fluids
- ► Flame-resistant, water-free hydraulic fluids
- ► Flame-resistant hydraulic fluids containing water (HFAE, HFAS, HFB, HFC)
- Reliability characteristics according to EN ISO 13849
- Hydraulic valves for industrial applications
- Selection of filters
- Information on available spare parts

Data sheet 90221 Data sheet 90222 Data sheet 90223 Data sheet 08012 Operating instructions 07600-B www.boschrexroth.com/filter www.boschrexroth.com/spc

Data sheet 90220

Bosch Rexroth AG Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Phone +49 (0) 93 52/40 30 20 my.support@boschrexroth.de www.boschrexroth.de © All rights reserved to Bosch Rexroth AG, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

The data specified only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.

Please note that our products are subject to a natural process of wear and aging.