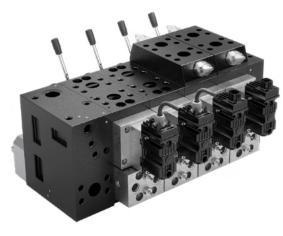
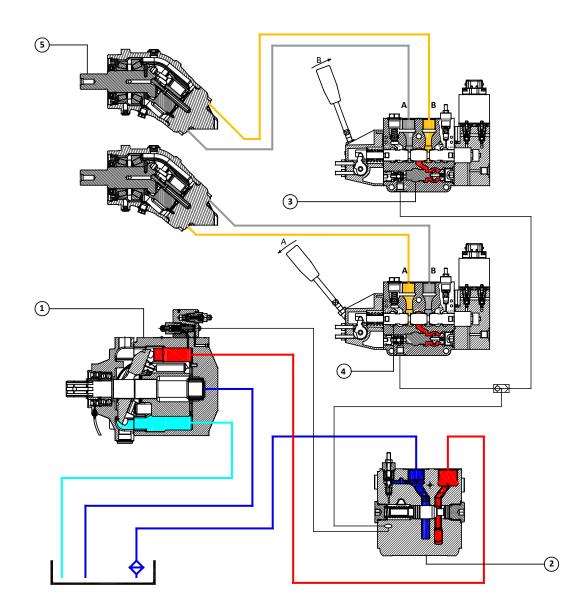

### **PDV315** Proportional Directional valve




| General description                                                           | 29.8 . |
|-------------------------------------------------------------------------------|--------|
| PIU soleinoid LS unloading valves                                             |        |
| PDS flow control spool                                                        | 306.   |
| PDR spool centered set                                                        | 308.   |
| Modules and code numbers                                                      | 31.2.  |
| Shock and suction valves                                                      |        |
| PDL Electrical LSA/B unloading                                                | 31.9   |
| PDLD Proportional Electrical LSA/B unloading                                  | 323.   |
| PEAC131 Proportional closed loop spool control input signal 0,5 Udc           | 324.   |
| PEAC132 Proportional closed loop spool control input signal control 0 ÷ 10 V  | 33.2.  |
| PEAC136 Proportional closed loop spool control input signal control 4 ÷ 20 mA | 340.   |
| PEACO31 Proportional open loop spool control input signal 0,5 Udc             | 348.   |
| PEACO32 Proportional open loop spool control input signal control 0 ÷ 10 V    | 35.5   |
| PEACO36 Proportional open loop spool control input signal control 4 ÷ 20 mA   | 362    |
| PEAD3 Proportional open loop spool control input signal PWM and ON-OFF        | 369.   |
| PEAP3 Proportional open loop spool control input signal PWM and ON-OFF        | 37.5 . |
| Overall dimension drawing                                                     | 382.   |
| Product selection chart                                                       |        |
| Composition form                                                              | 388.   |
|                                                                               |        |

### **PDV315** Proportional valve General description

**PDV315** is a hydraulic proportional directional valve, designed to offers a wide range controls options and flexibility.


The **PDV315** modular system enables bankable groups to perform many individual tasks, to meeting and exceeding the changing control needs of the off-highway machines of today, and well into the future to maximize the efficiency, controllability and reliability of vehicles.



#### PDV315 main features:

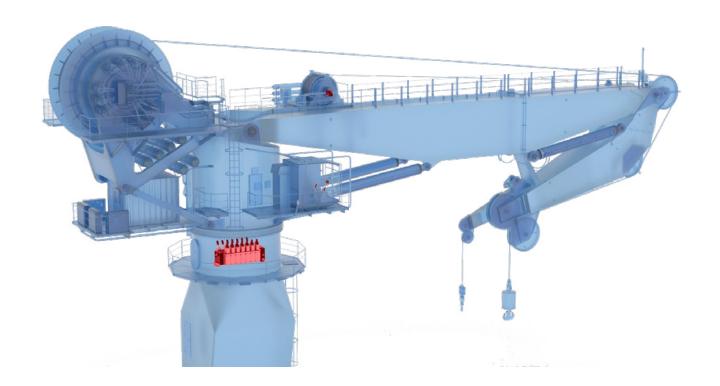
- Load sensing up-stream pressure compensation
- High flow/low pressure drop capability
- Integrated pump unloading system
- Integrated cut-off pump system
- Open/closed centre shifting system
- Precise metering capabilities
- LSA-LSB electrical unloading
- LSA-LSB electrical working pressure remote control
- Constant flow regardless of pressure
- Working sections symmetrical flow
- Optional priority inlet for steering or different priority functions
- Optional dual hydraulic pilot and electrohydraulic control
- ATEX and IECEx configuration
- CAN-Bus comunication
- EMC immunity ensures high safety with regard to electro-magnetic compatibility





High pressure port of **PPV** piston pump 1 supply the closed centre inlet section of **PDV315** proportional valve 2 which in turn feeds the down-stream working sections.

The **PDS** spool neutral position 4 unload the LS pump signal to tank, so that the swashplate angle is towards the minimum displacement and pressure in stand-by setting.


The spool position determines the flow demands ( speed rotation ) of the two **HPM** motors **5**.

The PDS main spool compares the pressure drop before and after the spool notches ( differential pressure  $\Delta p$  ), and therefore, the pump flow remain constant.

If the differential pressure increase, the pump swashplate is swivelled back towards the minimum displacement, and if the differential pressure decrease, the swashplate angle increase towards the max flow displacement until balance is restored within the valve.

Actuators load determines the working pressure, and the built-in pressure compensator 3 enable simultaneously function regardless of different working pressure.

# **PDV315** Proportional Directional Valve Example of application with OMFB hydraulic package



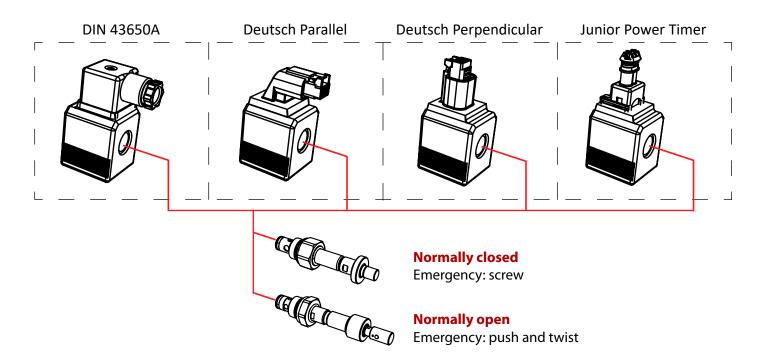
- 1. PPV90 load sensing piston pump
- 2. Pump slitter gear box
- 3. I/O controller PHSI7101008
- 4. PDV74/6 closed centre inlet
- **5**. Electronic double axis joystick PEJD
- 6. Graphic display PDHI703000
- 7. PPM40 piston motors



### **PDV315** Proportional Valve **Technical data**

The hydraulic features listed in this chart, are typical measured data obtained by using mineral based hydraulic oil according to DIN 51524 with a viscosity of 21 mm<sup>2</sup>/sec [102 SUS] and a temperature of 50 °C [122 °F]

|                                                                    | PDI inlet section, P po         | ort                                                                                | 600 l/min (max) | 158 US gal/min |
|--------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------|-----------------|----------------|
| Oil flow rate                                                      | PDIM - Mid inlet secti          | PDIM - Mid inlet section, P port                                                   |                 | 158 US gal/min |
|                                                                    | A, B port with pressur          | re compensator                                                                     | 500 l/min       | 132 US gal/min |
|                                                                    |                                 | Pressure relief valve setting                                                      | 400 bar         | 5800 psi       |
|                                                                    | <b>P</b> port                   | Working pressure                                                                   | 370 bar         | 5370 psi       |
| Max. pressure                                                      | A, B port                       |                                                                                    | 370 bar         | 5370 psi       |
|                                                                    | <b>Ty</b> port, directly to tai | nk                                                                                 |                 |                |
|                                                                    |                                 | Static                                                                             | 25 bar          | 363 psi        |
|                                                                    | <b>T</b> port                   | Dynamic                                                                            | 35 bar          | 508 psi        |
|                                                                    | Max. pilot pressure oil         | supply                                                                             | 30 bar          | 435 psi        |
|                                                                    | Re                              | Recommended                                                                        |                 | 86 °F ÷ 149 °F |
| Oil temperature                                                    | Min                             |                                                                                    | -30 °C          | -22 °F         |
|                                                                    | Max                             |                                                                                    | 90 °C           | 194 °F         |
|                                                                    | Ambient temperature             |                                                                                    | -30 ÷ 60 °C     | -22 ÷ 140 °F   |
|                                                                    | Ор                              | erating range                                                                      | 12 ÷ 75 mm²/sec | 65 ÷ 347 SUS   |
| Oil viscosity                                                      |                                 | Min                                                                                |                 | 39 SUS         |
| ŕ                                                                  |                                 | Max                                                                                |                 | 2128 SUS       |
|                                                                    | Standard                        |                                                                                    | 9 mm            | 0,35 in        |
| Spool stroke                                                       | Flow control proporti           | onal range                                                                         | 7,5 mm          | 0,3 in         |
|                                                                    | Pressure control prop           | otional range                                                                      | 7,5 mm          | 0,3 in         |
| Dand band mad                                                      | Flow control                    | Flow control                                                                       |                 | 0,06 in        |
| Daed band spool                                                    | Pressure control                | Pressure control                                                                   |                 | 0,06 in        |
| Max internal leakage A/B port at 100 bar [1450 psi] and 21 mm²/sec |                                 | A/B T without shock valves                                                         | 100 cm³/min     | 6,1 in³/min    |
|                                                                    |                                 | A/B T with shock valves                                                            | 115 cm³/min     | 7 in³/min      |
| Filtration                                                         | Max. contamination:             | Max. contamination: class 9 according to NAS 1638 (20/18/15 according to ISO 4406) |                 |                |

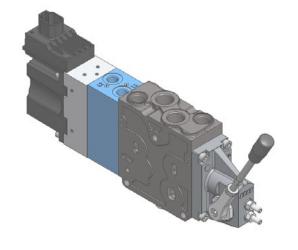

| PDH module - hydraulic control |                      |                  |  |
|--------------------------------|----------------------|------------------|--|
| Pilot pressure                 | Spool start movement | 4 bar / 58 psi   |  |
| Filot pressure                 | Spool end stroke     | 15 bar / 218 psi |  |
| Max. pilo                      | t pressure           | 30 bar / 436 psi |  |

PDV74 internal filters, mesh 100 µm

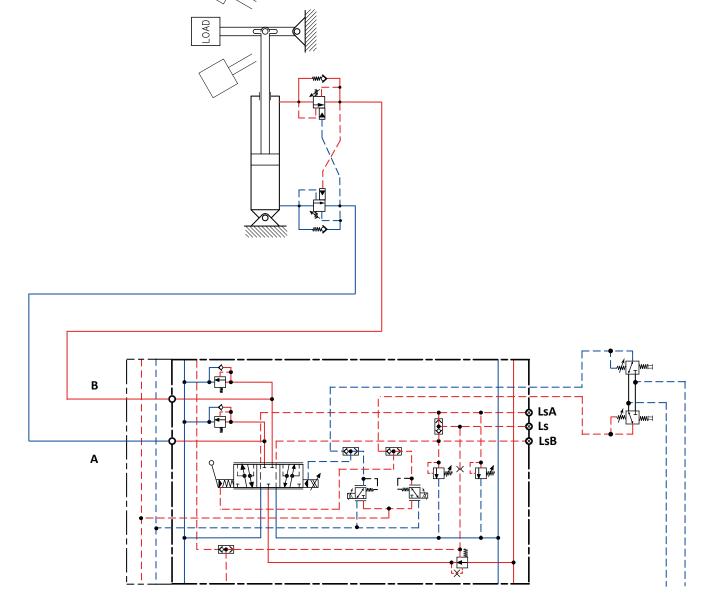
Mineral oil hydraulic fluid: according to DIN 51524 and 51525 or ISO 6743/4 PDV74 can also be used with phosphate esters (HFDR), water-glycol (HFC) or water oil (HFB) mixes, subject to our Technical Dept. approval



# **PDV315** Proportional Valve **PIU** solenoid LS unloading valves




| Code numbers PIU solenoid LS unloading valve codes |                       |             |             |  |
|----------------------------------------------------|-----------------------|-------------|-------------|--|
| Cartridge valve type                               | Connector type        | 12 Vdc      | 24 Vdc      |  |
| Normally closed                                    | DIN 43650A            | PIU0C023200 | PIU0C013200 |  |
| Emergency: screw<br>人 <sup>2</sup>                 | Deutsch Parallel      | PIU0C021200 | PIU0C011200 |  |
|                                                    | Deutsch Perpendicular | PIU0C022200 | PIU0C012200 |  |
|                                                    | Junior Power Timer    | PIU0C024200 | PIU0C014200 |  |
| Normally open Emergency: push and twist            | DIN 43650A            | PIU0A023100 | PIU0A013100 |  |
| Linergency, pash and twist                         | Deutsch Parallel      | PIU0A021100 | PIU0A011100 |  |
| WI DE                                              | Deutsch Perpendicular | PIU0A022100 | PIU0A012100 |  |
|                                                    | Junior Power Timer    | PIU0A024100 | PIU0A014100 |  |

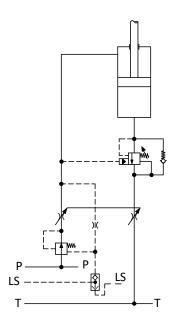

| Plug for LS unloading cavity |                  |              |
|------------------------------|------------------|--------------|
| Plug cavity                  | Hydraulic scheme | Code numbers |
|                              | 古                | PIP10000000  |

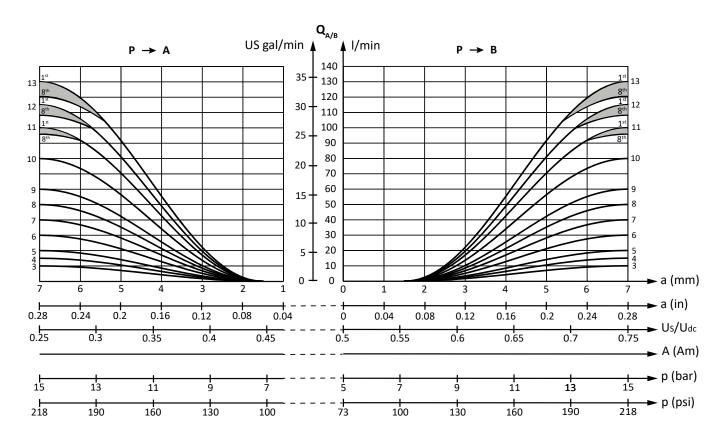
# **PDV315** Proportional Valve **PIU** solenoid LS unloading valves - Technical data

| Max. operating pressure           | 3                                | 50 bar                   |                 |
|-----------------------------------|----------------------------------|--------------------------|-----------------|
| Max. internal leakage             | 350 bar, 46 mm²/sec<br>1 cm³/min |                          |                 |
| max pressure drop                 | )                                | < 1,5                    | bar             |
| Expected life - 350 bar, 0,5 Hz ( | 1s on / 1s off)                  | 10.000.00                | 00 cycles       |
| Response time for LS press        | sure relief                      | < 28                     | 0ms             |
|                                   | Recommended                      | 30 ÷ (                   | 50 °C           |
| Oil temperature                   | Min.                             | -30                      | °C              |
|                                   | Max.                             | 90                       | °C              |
| Ambient temperatu                 | ire                              | -30 ÷                    | 60 °C           |
| Max. coil surface tempe           | rature                           | 160                      | °C              |
|                                   | Operating range                  |                          | 0 cSt           |
| Oil viscosity                     | Min.                             | 4 mm²/sec                |                 |
|                                   | Max.                             | 460 mm²/sec              |                 |
|                                   | Connector DIN 43650              | IP65                     |                 |
| Degree of enclosure               | Constant Deviate DT04.2          | IP67                     |                 |
|                                   | Connector Deutsch DT04-2p        | IP69K integrated to coil |                 |
| Rated voltage                     |                                  | 12 Vdc                   | 24 Vdc          |
| Supply voltage                    |                                  | 10,6 ÷ 14,6 Vdc          | 20,4 ÷ 28,6 Vdc |
| Working temperatu                 | -30 ÷ 80 °C                      |                          |                 |
| Maximum coil surface temperature  |                                  | 175 °C                   |                 |
| Heat insulation                   |                                  | Class H (180 °C)         |                 |
| Resistance                        |                                  | 7,5 Ω                    | 29,9 Ω          |
| Current consumption               |                                  | 1,6 A                    | 0,8 A           |
| Power consumption                 | n                                | 19                       | W               |



PDZ is a small HIC body that can be matched with any kind of PDV74 working section PDW, to get hydraulic and electro-hydraulic spool control





| PDZ overrall dimensions | For open loop<br>spool control                               | For closed loop<br>spool control              |
|-------------------------|--------------------------------------------------------------|-----------------------------------------------|
|                         | <b>PDZ7000000</b><br>1/4″ BSPP - 12 mm deep                  | <b>PDZ</b><br>1/4″ BSPP - 12 mm deep          |
|                         | <b>PDZ</b><br>[7/ <sub>16</sub> in-20 UNF-2B - 0,47 in deep] | <b>PDZ</b><br>[% in-20 UNF-2B - 0,47 in deep] |

#### Oil flow characteristics

With flow control spool, the oil flow depends on type of PDW module ( with or without pressure compensator ) and type of pump ( fixed or variable displacement ).

In the below chart, the ordinate numbers refer to spool size, and the ordinal numbers refer to the same spool size but fitted in a different position with related lost flow.







### PDV315 Proportional Valve PDS modules - Flow control main spool

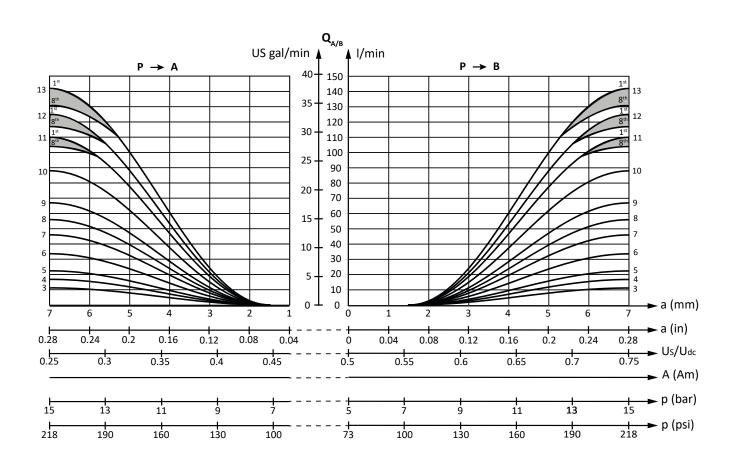
|      | Double acting flow control spool                 |                                    |                                           |                                       |                                       |
|------|--------------------------------------------------|------------------------------------|-------------------------------------------|---------------------------------------|---------------------------------------|
|      |                                                  |                                    |                                           |                                       |                                       |
|      |                                                  |                                    | Code number                               | rs and symbol                         |                                       |
| Size | Max oil flow<br>pressure<br>compensated<br>I/min | B A                                | B A                                       | B A                                   | B A                                   |
|      |                                                  | 4-way, 3-position - A, B<br>closed | 4-way, 3-position,<br>A, B <del>→</del> T | 4-way, 3-position,<br>B → T; A closed | 4-way, 3-position,<br>A → T; B closed |
| 1    |                                                  |                                    |                                           |                                       |                                       |
| 2    |                                                  |                                    |                                           |                                       |                                       |
| 3    |                                                  |                                    |                                           |                                       |                                       |
| 4    |                                                  |                                    |                                           |                                       |                                       |
| 5    |                                                  |                                    |                                           |                                       |                                       |
| 5,5  |                                                  |                                    |                                           |                                       |                                       |
| 6    |                                                  |                                    |                                           |                                       |                                       |
| 7    |                                                  |                                    |                                           |                                       |                                       |
| 8    |                                                  |                                    |                                           |                                       |                                       |
| 9    |                                                  |                                    |                                           |                                       |                                       |
| 10   |                                                  |                                    |                                           |                                       |                                       |
| 11   |                                                  |                                    |                                           |                                       |                                       |
| 12   |                                                  |                                    |                                           |                                       |                                       |
| 13   |                                                  |                                    |                                           |                                       |                                       |

|      | Double acting asymmetric flow control spool |                                    |                                |                                       |                                       |  |
|------|---------------------------------------------|------------------------------------|--------------------------------|---------------------------------------|---------------------------------------|--|
|      |                                             |                                    |                                |                                       |                                       |  |
| Max  | Max oil flow  Code numbers and symbol       |                                    |                                |                                       |                                       |  |
| comp | essure<br>pensated<br>( <b>min</b>          | B A  T P T                         | <u> </u>                       |                                       |                                       |  |
| Α    | В                                           | 4-way, 3-position - A, B<br>closed | 4-way, 3-position,<br>A, B → T | 4-way, 3-position,<br>B → T, A closed | 4-way, 3-position,<br>A → T, B closed |  |
| 15   | 7,5                                         |                                    |                                |                                       |                                       |  |
| 20   | 40                                          |                                    |                                |                                       |                                       |  |
| 25   | 15                                          |                                    |                                |                                       |                                       |  |
| 30   | 40                                          |                                    |                                |                                       |                                       |  |
| 40   | 20                                          |                                    |                                |                                       |                                       |  |
| 40   | 30                                          |                                    |                                |                                       |                                       |  |
| 40   | 60                                          |                                    |                                |                                       |                                       |  |
| 50   | 30                                          |                                    |                                |                                       |                                       |  |
| 60   | 40                                          |                                    |                                |                                       |                                       |  |
| 65   | 30                                          |                                    |                                |                                       |                                       |  |
| 75   | 30                                          |                                    |                                |                                       |                                       |  |
| 80   | 40                                          |                                    |                                |                                       |                                       |  |
| 110  | 40                                          |                                    |                                |                                       |                                       |  |
| 130  | 60                                          |                                    |                                |                                       |                                       |  |



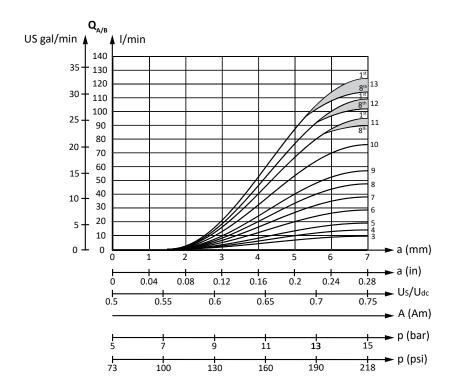
### PDV315 Proportional Valve PDS modules - Flow control main spool

|      | Single acting flow control spool                 |                   |                   |  |
|------|--------------------------------------------------|-------------------|-------------------|--|
|      |                                                  |                   |                   |  |
|      |                                                  | Symbol and c      | ode numbers       |  |
| Size | Max oil flow<br>pressure<br>compensated<br>I/min | B A  T P T        | B A  T P T        |  |
|      |                                                  | 3-way, 3-position | 3-way, 3-position |  |
|      |                                                  | $P \rightarrow A$ | $P \rightarrow B$ |  |
| 1    | 7,5                                              |                   |                   |  |
| 2    | 15                                               |                   |                   |  |
| 3    | 20                                               |                   |                   |  |
| 4    | 30                                               |                   |                   |  |
| 5    | 40                                               |                   |                   |  |
| 6    | 50                                               |                   |                   |  |
| 7    | 60                                               |                   |                   |  |
| 8    | 80                                               |                   |                   |  |
| 9    | 100                                              |                   |                   |  |

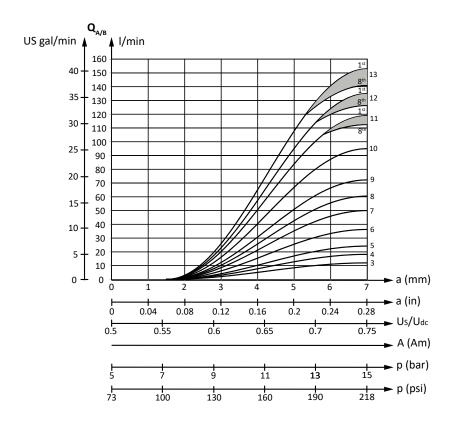

|      | Double acting flow control spool, floating position     |                                                  |                                                  |  |
|------|---------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--|
|      |                                                         |                                                  |                                                  |  |
|      | Symbol and code numbers                                 |                                                  |                                                  |  |
| Size | Max oil flow<br>pressure<br>compensated<br><b>I/min</b> | B A  T P T                                       | B A  T P T                                       |  |
|      |                                                         | 3-way, 4-position<br>floating position on A port | 3-way, 4-position<br>floating position on B port |  |
| 1    | 10                                                      |                                                  |                                                  |  |
| 2    | 15                                                      |                                                  |                                                  |  |
| 3    | 25                                                      |                                                  |                                                  |  |
| 4    | 40                                                      |                                                  |                                                  |  |
| 5    | 50                                                      |                                                  |                                                  |  |

| Spool centered set, code numbers (needed for any kind of flow control spool) |             |                             |  |
|------------------------------------------------------------------------------|-------------|-----------------------------|--|
| Tightening torque                                                            |             | Tightening torque           |  |
| 6 <sup>+1</sup> Nm                                                           |             | 6 <sup>+1</sup> Nm          |  |
| 53,1 <sup>+8,85</sup> lb*in                                                  |             | 53,1 <sup>+8,85</sup> lb*in |  |
| Manual control                                                               | PDR00300101 |                             |  |
| Hydraulic - Electrohydraulic                                                 | PDR00300102 |                             |  |




|      | Double acting flow control, regenerative function |                                |                                |  |  |
|------|---------------------------------------------------|--------------------------------|--------------------------------|--|--|
|      |                                                   |                                |                                |  |  |
|      |                                                   | Symbol and c                   | ode numbers                    |  |  |
| Size | Max oil flow<br>pressure<br>compensated<br>I/min  | B A  T P T                     | B A  T P T                     |  |  |
|      |                                                   | Regenerative circuit on A port | Regenerative circuit on B port |  |  |
| 1    | 7,5                                               |                                |                                |  |  |
| 2    | 15                                                |                                |                                |  |  |
| 3    | 20                                                |                                |                                |  |  |
| 4    | 30                                                |                                |                                |  |  |
| 5    | 40                                                |                                |                                |  |  |
| 6    | 50                                                |                                |                                |  |  |
| 7    | 60                                                |                                |                                |  |  |
| 8    | 80                                                |                                |                                |  |  |
| 9    | 100                                               |                                |                                |  |  |
| 10   | 130                                               |                                |                                |  |  |

| Spool centered set, code numbers (needed for any kind of flow control spool) |                            |                             |  |  |
|------------------------------------------------------------------------------|----------------------------|-----------------------------|--|--|
| Tightening torque                                                            |                            | Tightening torque           |  |  |
| 6 <sup>+1</sup> Nm                                                           |                            | 6 ₀ Nm                      |  |  |
| 53,1 <sup>+8,85</sup> lb*in                                                  |                            | 53,1 <sup>+8,85</sup> lb*in |  |  |
| Manual control PDR00300101                                                   |                            |                             |  |  |
| Hydraulic - Electrohydraulic                                                 | ectrohydraulic PDR00300102 |                             |  |  |




## **PDV315** Proportional Valve Technical characteristics

Oil flow characteristics PDW without pressure compensator, and pump differential pressure setting = 16 bar



Oil flow characteristics PDW without pressure compensator, and pump differential pressure setting = 25 bar



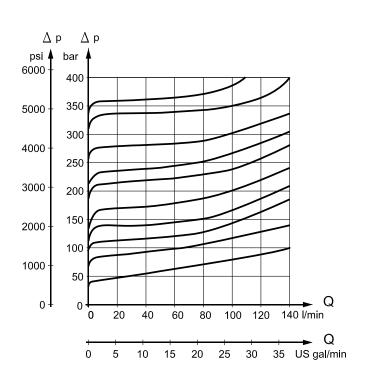


| Product | Description                                                       | Aluminium                                              | Cast iron   |
|---------|-------------------------------------------------------------------|--------------------------------------------------------|-------------|
| PDM     |                                                                   | With                                                   | lever       |
|         | Mechanical actuation                                              | PDM10101000 PDM11101000                                |             |
|         | Meenamear actuation                                               | Without lever                                          | ut lever    |
| 33      |                                                                   | PDM101000000                                           | PDM11100000 |
| PDM     |                                                                   |                                                        |             |
|         | Mechanical actuation,<br>with flow adjustement nuts<br>protection | PDM10200000                                            | PDM11200000 |
| PDM     | Mechanical actuation with directional sensors for electri-        | With lever                                             |             |
|         | cal monitoring of spool valve movement  Brown Vcc + Black RL      | Normally closed: PDM1111100  Normally open: PDM1112100 | PDM1111100  |
|         | Vcc 10 V 30 V IL < 200 mA                                         |                                                        | PDM1112100  |
| PDF     | Friction detent                                                   | Cast iron only                                         | on only     |
|         | (for mechanical<br>actuation only)                                | PDF10                                                  | 000000      |
|         | Flow adjustement protection<br>nuts for PDM mechanical<br>control |                                                        |             |

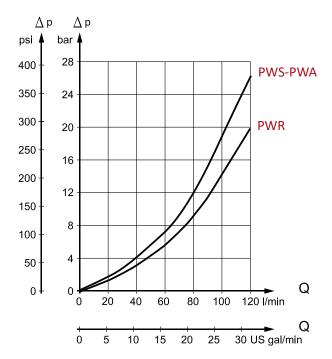
| Product | Description                               | Aluminium                                                                                                                | Cast iron                                                                                                                 |
|---------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| PDC     | Rear cover for mechanical actuation       | PDC0000000                                                                                                               | PDC10000000                                                                                                               |
| PDH     | Hydraulic actuation                       | A/B pilot port 1/4 BSPP deep: 12 mm (0,47 in) PDH7000000  A/B pilot port 7/16-20UNF-2B deep: 12 mm (0,47 in) PDH70000100 | A/B pilot port 1/4 BSPP deep: 12 mm (0,47 in) PDH71000000  A/B pilot port 7/16-20UNF-2B deep: 12 mm (0,47 in) PDH71000100 |
|         | Pilot LS A/B relief valve                 | 10 ÷40 bar<br>41 ÷ 80 bar<br>81 ÷ 380 bar                                                                                | PLS0A100000  PLS0A200000  PLS0A400000                                                                                     |
|         | Plug for pilot LS A/B relief valve cavity | PLSOPO                                                                                                                   | 00000                                                                                                                     |



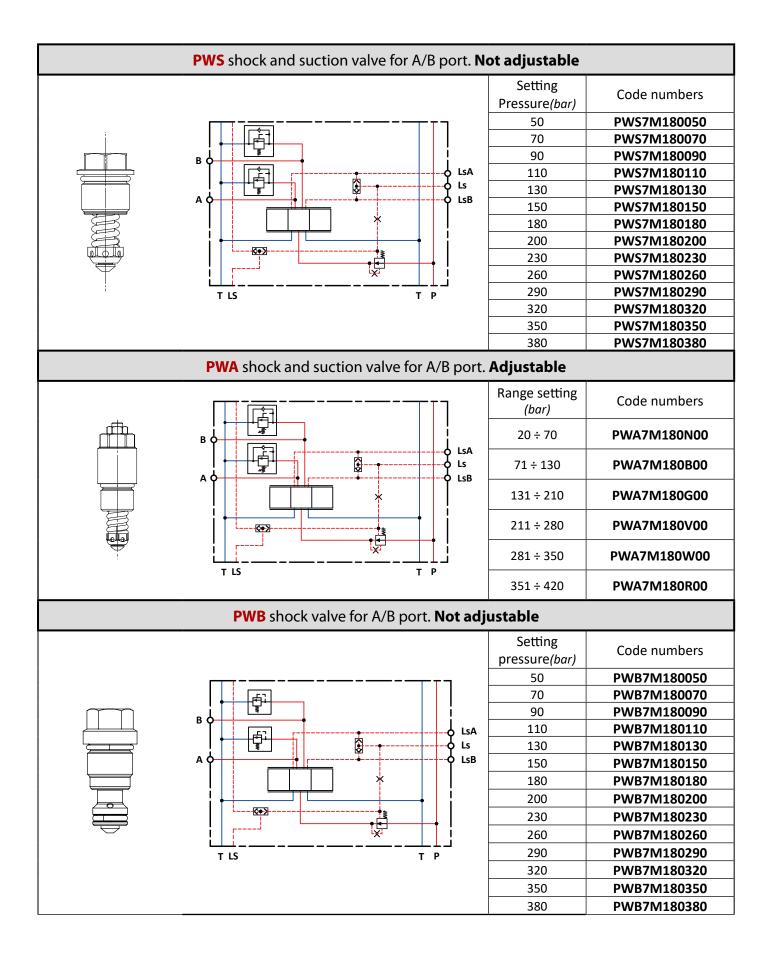
| Product | Description                                     | Aluminium                                 | Cast iron   |
|---------|-------------------------------------------------|-------------------------------------------|-------------|
| PDD     |                                                 | P→A - lock P→B - free<br>PDD30100000      |             |
|         |                                                 | P→A - free P→B - lock PDD30010000         |             |
|         | Mechanical spool lock device,<br>manual release | P→A - lock P→B - lock<br>PDD30110000      |             |
|         |                                                 | P→A - float P→B - free <b>PDD30200000</b> |             |
|         |                                                 | P→A - free P→B - float <b>PDD30020000</b> |             |
| PDF     |                                                 |                                           |             |
|         | Friction control                                |                                           | PDF12000001 |




| Product | Description                                              | Code n                                                                    | umbers                                                                         |
|---------|----------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| PIZ     | For PDI with internal pilot oil supply                   | PIZ100                                                                    | 000000                                                                         |
| PIY     | For PDI with external pilot oil supply                   | A/B pilot port<br>1/4 BSPP<br>deep: 12 mm (0,47 in)<br><b>PIY10000000</b> | A/B pilot port<br>7/16-20UNF-2B<br>deep: 12 mm (0,47 in)<br><b>PIY10000010</b> |
|         | For PDE with external drain<br>line electrical actuation | A/B pilot port<br>1/4 BSPP<br>deep: 12 mm (0,47 in)<br><b>PED10000000</b> | A/B pilot port<br>7/16-20UNF-2B<br>deep: 12 mm (0,47 in)<br><b>PED10000010</b> |
|         | For PDE with internal drain<br>line electrical actuation | PEI10000000                                                               |                                                                                |
|         | For PDE with LS carry-over                               | A/B pilot port<br>1/4 BSPP<br>deep: 12 mm (0,47 in)<br><b>PED2000000</b>  | A/B pilot port<br>7/16-20UNF-2B<br>deep: 12 mm (0,47 in)<br><b>PED20000010</b> |
|         | For PDE prearranged LS<br>carry-over                     | PEI1000000                                                                |                                                                                |


### PDV315 Proportional Valve Technical features

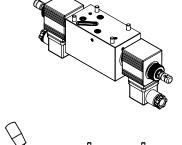
PWS, PWA and PWB are shock suction valves design to absorb shock effects only, and they should never be used as a pressure relief valves.

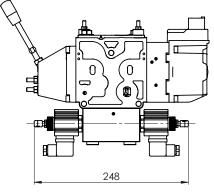

PWS, PWA and PWB are set at an oil flow of 10 l/min. If the hydraulic actuator requires a pressure relief valve function, a PDW module with built-in LS A/B pilot pressure limit valves should be used

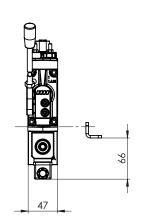


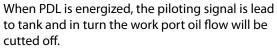
PWR suction valve



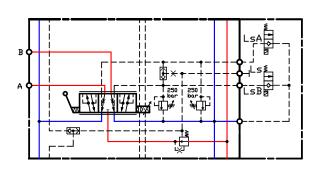

### PDV315 Proportional Valve Shock and suction valves





| PWR suction valve for A/B port |                                                       |              |  |  |
|--------------------------------|-------------------------------------------------------|--------------|--|--|
| Product                        | Hydraulic diagram                                     | Code numbers |  |  |
|                                |                                                       | PWR7M180000  |  |  |
|                                | Plug for <b>PWS - PWA - PWB</b> and <b>PWR</b> cavity |              |  |  |
| Product                        | Hydraulic diagram                                     | Code numbers |  |  |
|                                |                                                       | PWP7M18000   |  |  |




# PDV315 Proportional Valve PDL module - Electrical LSA/B unloading ON-OFF actuation normally closed

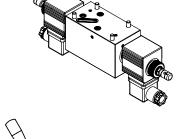


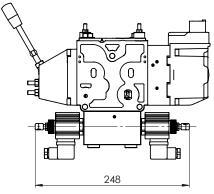


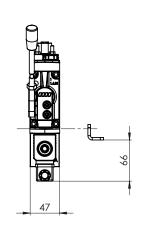





PDL modules is always to be matched with PDW pressure compesated.

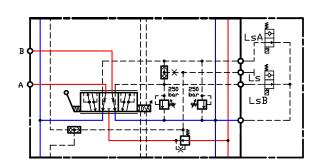




| PDL code numbers                       |                       |             |             |
|----------------------------------------|-----------------------|-------------|-------------|
| Hydraulic diagram                      | Connector type        | 12V dc      | 24V dc      |
| Active on LsA                          | Deutsch Parallel      | PDL12C11200 | PDL12C31200 |
| LsB T Ls LsA                           | Deutsch Perpendicular | PDL12C12200 | PDL12C32200 |
| ZE                                     | DIN                   | PDL12C13200 | PDL12C33200 |
| LsA                                    | JPT                   | PDL12C14200 | PDL12C34200 |
| Active on LsB                          | Deutsch Parallel      | PDL13C11200 | PDL13C31200 |
|                                        | Deutsch Perpendicular | PDL13C12200 | PDL13C32200 |
| <b>***</b>                             | DIN                   | PDL13C13200 | PDL13C33200 |
| LsB                                    | JPT                   | PDL13C14200 | PDL13C34200 |
| Active on LsA and LsB                  | Deutsch Parallel      | PDL11C11200 | PDL11C31200 |
| F                                      | Deutsch Perpendicular | PDL11C12200 | PDL11C32200 |
| ************************************** | DIN                   | PDL11C13200 | PDL11C33200 |
| LsB LsA                                | JPT                   | PDL11C14200 | PDL11C34200 |
| Active on Ls                           | Deutsch Parallel      | PDL14C11200 | PDL14C31200 |
|                                        | Deutsch Perpendicular | PDL14C12200 | PDL14C32200 |
| <u>□</u>                               | DIN                   | PDL14C13200 | PDL14C33200 |
| Ls                                     | JPT                   | PDL14C14200 | PDL14C34200 |


| PDL code numbers                       |                       |             |             |
|----------------------------------------|-----------------------|-------------|-------------|
| Hydraulic diagram                      | Connector type        | 12V dc      | 24V dc      |
| Active on LsA                          | Deutsch Parallel      | PDL32C11200 | PDL32C31200 |
| LsB T Ls LsA                           | Deutsch Perpendicular | PDL32C12200 | PDL32C32200 |
|                                        | DIN                   | PDL32C13200 | PDL32C33200 |
| <u> </u>                               | JPT                   | PDL32C14200 | PDL32C34200 |
| Active on LsB                          | Deutsch Parallel      | PDL33C11200 | PDL33C31200 |
| Г <del>-</del>                         | Deutsch Perpendicular | PDL33C12200 | PDL33C32200 |
| ************************************** | DIN                   | PDL33C13200 | PDL33C33200 |
| L                                      | JPT                   | PDL33C14200 | PDL33C34200 |
| Active on LsA and LsB                  | Deutsch Parallel      | PDL35C11200 | PDL35C31200 |
| F                                      | Deutsch Perpendicular | PDL35C12200 | PDL35C32200 |
|                                        | DIN                   | PDL35C13200 | PDL35C33200 |
| L                                      | JPT                   | PDL35C14200 | PDL35C34200 |
| Active on Ls                           | Deutsch Parallel      | PDL34C11200 | PDL34C31200 |
| F                                      | Deutsch Perpendicular | PDL34C12200 | PDL34C32200 |
|                                        | DIN                   | PDL34C13200 | PDL34C33200 |
| ii                                     | JPT                   | PDL34C14200 | PDL34C34200 |



# PDV315 Proportional Valve PDL module - Electrical LSA/B unloading ON-OFF actuation normally open





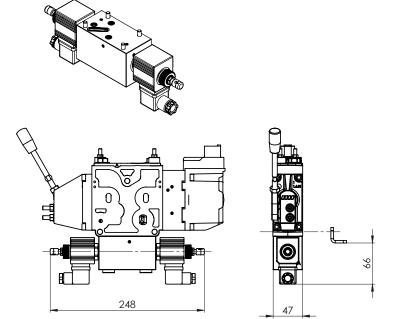



When PDL is deenergized, the piloting signal is lead to tank and in turn the work port oil flow will be cutted off.

PDL modules is always to be matched with PDW pressure compesated.

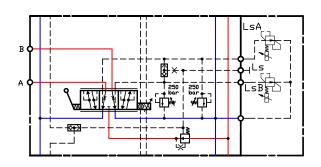


|                       | PDL code numbers      |             |             |  |
|-----------------------|-----------------------|-------------|-------------|--|
| Hydraulic diagram     | Connector type        | 12V dc      | 24V dc      |  |
| Active on LsA         | Deutsch Parallel      | PDL32A11100 | PDL32A31100 |  |
| LsB T Ls LsA          | Deutsch Perpendicular | PDL32A12100 | PDL32A32100 |  |
|                       | DIN                   | PDL32A13100 | PDL32A33100 |  |
|                       | JPT                   | PDL32A14100 | PDL32A34100 |  |
| Active on LsB         | Deutsch Parallel      | PDL33A11100 | PDL33A31100 |  |
|                       | Deutsch Perpendicular | PDL33A12100 | PDL33A32100 |  |
|                       | DIN                   | PDL33A13100 | PDL33A33100 |  |
|                       | JPT                   | PDL33A14100 | PDL33A34100 |  |
| Active on LsA and LsB | Deutsch Parallel      | PDL35A11100 | PDL35A31100 |  |
| r                     | Deutsch Perpendicular | PDL35A12100 | PDL35A32100 |  |
|                       | DIN                   | PDL35A13100 | PDL35A33100 |  |
|                       | JPT                   | PDL35A14100 | PDL35A34100 |  |
| Active on Ls          | Deutsch Parallel      | PDL34A11100 | PDL34A31100 |  |
| F                     | Deutsch Perpendicular | PDL34A12100 | PDL34A32100 |  |
|                       | DIN                   | PDL34A13100 | PDL34A33100 |  |
|                       | JPT                   | PDL34A14100 | PDL34A34100 |  |


| PDL code numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |             |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|-------------|
| Hydraulic diagram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Connector type        | 12V dc      | 24V dc      |
| Active on LsA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deutsch Parallel      | PDL12A11100 | PDL12A31100 |
| LsB T Ls LsA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Deutsch Perpendicular | PDL12A12100 | PDL12A32100 |
| \(\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tin}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tett{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\tetx{\texi}\text{\texi}\text{\texi}\text{\texi}\text{\text{\text{\tin\text{\texit{\text{\texi}\text{\texi}\text{\texi}\text{\texit}\titt{\texitit}}\\texit{\texit{\texi{\texi{\texi{\tet | DIN                   | PDL12A13100 | PDL12A33100 |
| LsA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JPT                   | PDL12A14100 | PDL12A34100 |
| Active on LsB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deutsch Parallel      | PDL13A11100 | PDL13A31100 |
| r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Deutsch Perpendicular | PDL13A12100 | PDL13A32100 |
| ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIN                   | PDL13A13100 | PDL13A33100 |
| LsB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JPT                   | PDL13A14100 | PDL13A34100 |
| Active on LsA and LsB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Deutsch Parallel      | PDL11A11100 | PDL11A31100 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Deutsch Perpendicular | PDL11A12100 | PDL11A32100 |
| <u>₩</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DIN                   | PDL11A13100 | PDL11A33100 |
| LsB LsA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JPT                   | PDL11A14100 | PDL11A34100 |
| Active on Ls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Deutsch Parallel      | PDL14A11100 | PDL14A31100 |
| F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Deutsch Perpendicular | PDL14A12100 | PDL14A32100 |
| <u>™</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DIN                   | PDL14A13100 | PDL14A33100 |
| Ls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JPT                   | PDL14A14100 | PDL14A34100 |



### **PDV315** Proportional Valve


### PDLD module - Electrical LSA/B unloading

Proportional actuation normally open (current signal mA)



PDLD is an electro-hydraulic device that allows the A/B port working pressure to be remotely an proportionally operated according to a current signal (mA). When the working pressure exceed the setting pressure value, the A/B port oil flow will be cutted off.

When PDLD is not energized, PDW is almost pressureless, as well as the A-B oil flow is cutted off.



|                                                        | PDLD code numbers |             |             |  |
|--------------------------------------------------------|-------------------|-------------|-------------|--|
| Hydraulic diagram                                      | Connector type    | 12V dc      | 24V dc      |  |
| Active on LsA  LSB T LS LSA                            | Deutsch Parallel  | PDL12D11000 | PDL12D31000 |  |
| Active on LsB LsB T Ls LsA                             | Deutsch Parallel  | PDL13D11000 | PDL13D31000 |  |
| Active on LsA and LsB  LsB T Ls LsA  LsB LsA  LsB LsA  | Deutsch Parallel  | PDL11D11000 | PDL11D31000 |  |
| Active on Ls  LSB T LS LSA  LSB T LS LSA  LSB T LS LSA | Deutsch Parallel  | PDL14D11000 | PDL14D31000 |  |



# PDV315 - PEAC131 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0,5 Udc

PEAC131 is a proportional high performance PDV spool actuation with integrated electronics and inductive transducer (LVDT) that operates safely and precisely the main spool movement according to an electrical signal coming from a remote control.

The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

The spool position is detected in the LVDT transducer which generates an electric feed-back signal registered by the electronics. The variation between the input signal and the feed-back signal, actuates the solenoid valves accordingly, so that, the hydraulic pilot pressure will drive the main spool in the right position.

All PEAC131 modules comes with integrated fault monitoring system, available in two version:

Active version Passive version

#### **Active fault monitoring**

When an error state is detected, the two proportional solenoid valves will be automatically deactivated, a red lamp will light-up and drive the spool in neutral position (if it's not seized up). The system will only react to failures of more than 500 ms (in other words there is delay of half a second before anything happens). An alarm signal is sent out through the connector, and minus is opened.

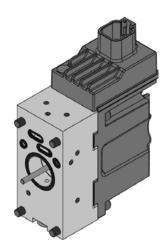
This error state is memorized, and continues until the system is being reset by switching off the supply voltage.

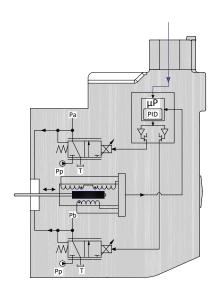
Shortly, when the active fault monitoring system is connected

and an error state is detected, the system ensures a fast and operator free reaction, that will put the complete hydraulic circuit into venting conditions, thus preventing uncontrollable machine movements.

#### Passive fault monitoring

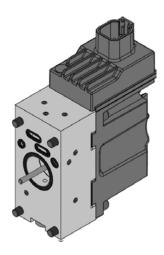
When an error state is detected, the two proportional solenoid valves will not be deactivated, a red lamp will light-up, but still control the main spool.


When a fault condition occurs, after a delay of 250 ms an alarm signal is sent out through a devoted pin


This state is not memorized, and when the faulty state disappears, the alarm signal will turn to passive again.

In order to prevent the electronic from going into an undefined state, any time the system is being triggered or reset, a general check of power supply and the internal clock frequency is made.

The use of PEAC131 module both passive or active version, allows the machines hydraulic system to be made with different level of safety degree that for the choice of which it is essential to know the exactly required functions.


When the PEAC131 module active version is connected with the pump unloading system, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.

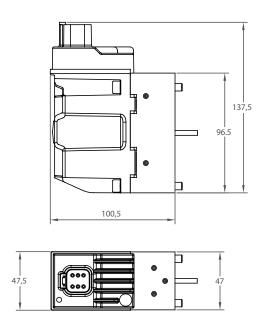




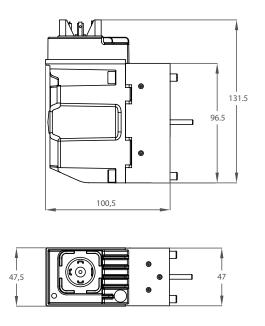


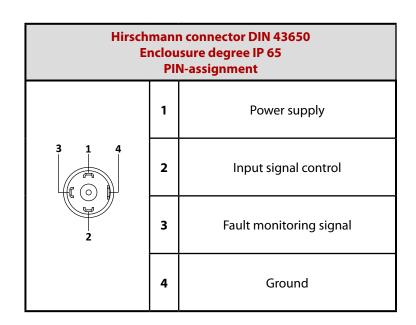
PDV315 - PEAC131 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0,5 Udc




### PEAC131 is defined by:

- Inductive transducer with resolution < 12 μm
- Integrated diagnosis and error memory
- Fault monitoring transistor output for signal source
- Higher spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Low hysteresis
- Quicker reaction time
- Spool direction movement output
- Integrated PWM/Pulse Width Modulation
- Low electrical power

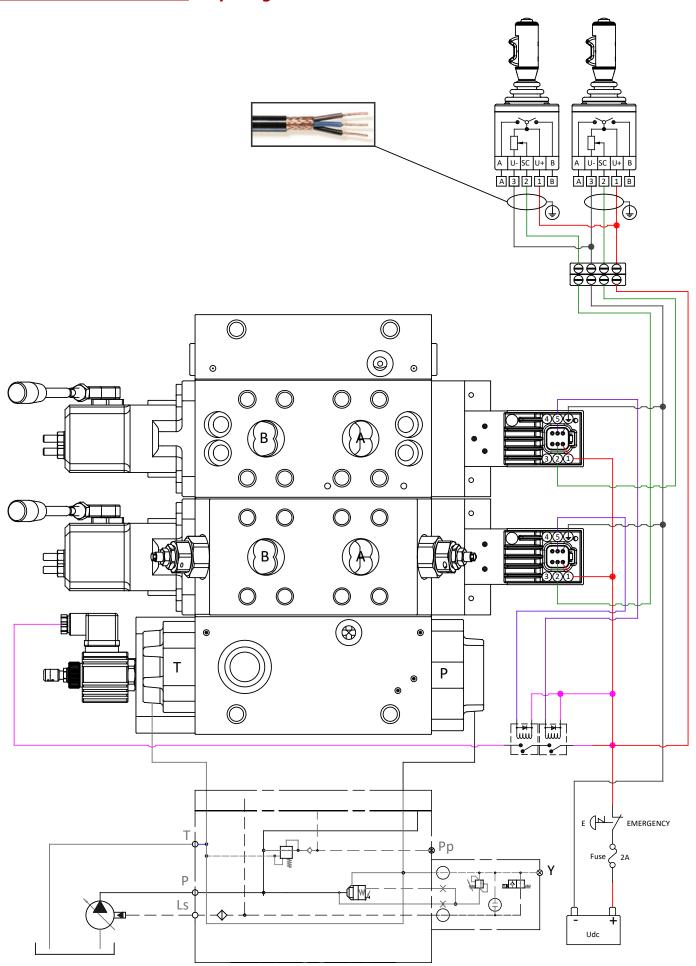

|                                         | PEAC131 Technical data                                                                  |              |
|-----------------------------------------|-----------------------------------------------------------------------------------------|--------------|
| Rated supply voltage                    | 10 ÷ 30 Vdc                                                                             |              |
| Max ripple                              | 5%                                                                                      |              |
| Signal control                          | 0,5 Udc                                                                                 |              |
| Range control signal                    | 0,25 Udc to 0,75 Udc                                                                    |              |
| Neutral spool position                  | 0,5 Udc                                                                                 |              |
| Max threshold signal, <b>A</b> port     | 1 V                                                                                     |              |
| Max threshold signal, <b>B</b> port     | 1 V                                                                                     |              |
| Max current signal @ rated voltage      | 48 mA                                                                                   |              |
| Input capacitor                         | 100 ηF                                                                                  |              |
| Signal control impedance                | 25 kΩ                                                                                   |              |
| Power consumption                       | 8,7 W                                                                                   |              |
| Heat insulation                         | Class H (180°C)                                                                         |              |
| Duty cycle                              | ED 100%                                                                                 |              |
| Max current consumption                 | 650 mA                                                                                  |              |
| Current consumption in neutral position | 80 mA                                                                                   |              |
| Coil impedance @ 20°C                   | 8,9 Ω                                                                                   |              |
| Dither frequency                        | 50-200 Hz                                                                               |              |
| Recommended frequency                   | 100 Hz                                                                                  |              |
| Enclouser degree (El                    | IP 66 - IP 67 - IP 69K                                                                  |              |
| Weight cast iron body                   | 1,8 kg                                                                                  |              |
| Weight aluminium body                   | 1,3 kg                                                                                  |              |
|                                         | debugging parameters and set-up function a h connector AT04-6P (to be matched with AT06 |              |
| Fault monitoring system                 | Max current on safety output (pin 5)                                                    | 50 mA        |
| rault monitoring system                 | Reaction time a fault                                                                   | 500 ms       |
| Max current output signa                | 50 mA                                                                                   |              |
| Reaction time (constant voltage)        | From neutral position to max spool travel                                               | 110 - 140 ms |
|                                         | From max spool travel to neutral                                                        | 70 - 90 ms   |
| Reaction time (neutral switch)          | From neutral position to max spool travel                                               | 130 - 170 ms |
|                                         | From max spool travel to neutral                                                        | 70 - 90 ms   |




# PDV315 - PEAC131 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal 0,5 Udc - Electrical connectors

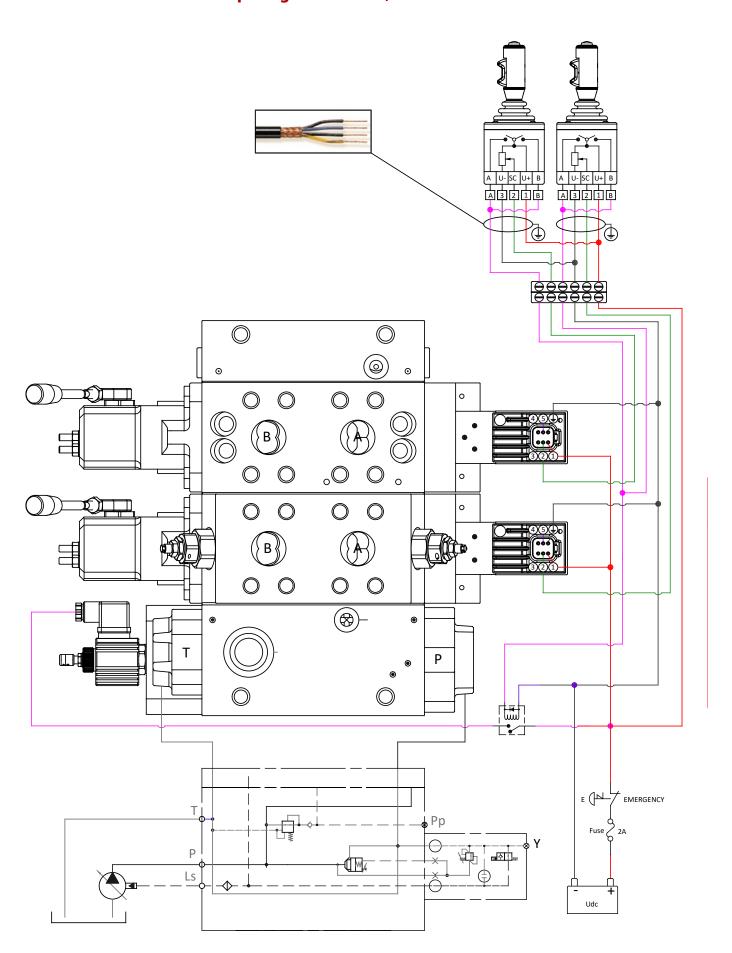


| Deutsch connector AT04-6P<br>Enclousure degree IP 69K<br>PIN-assignment |   |                         |                                     |  |  |  |
|-------------------------------------------------------------------------|---|-------------------------|-------------------------------------|--|--|--|
|                                                                         | 1 | Power supply            |                                     |  |  |  |
| 1 2 3                                                                   | 2 | Input signal control    |                                     |  |  |  |
|                                                                         | 3 | CAN-high                | <b>A</b> port-spool movement signal |  |  |  |
|                                                                         | 4 | CAN-low                 | <b>B</b> port-spool movement signal |  |  |  |
|                                                                         | 5 | Fault monitoring signal |                                     |  |  |  |
|                                                                         | 6 | Ground                  |                                     |  |  |  |





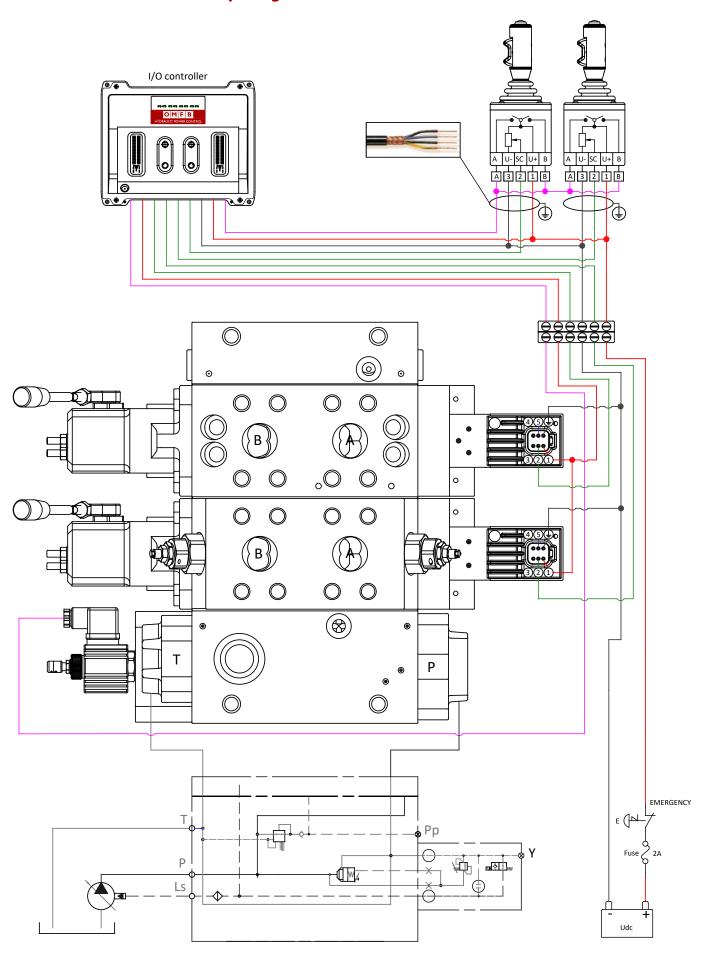

|                   | Code numbers   |                |                 |                |  |
|-------------------|----------------|----------------|-----------------|----------------|--|
| Connector version | Active version |                | Passive version |                |  |
|                   | Cast-iron body | Aluminium body | Cast-iron body  | Aluminium body |  |
| Deutsch AT04-6P   | PEAC0181000    | PEAC1181000    | PEAC0171000     | PEAC1171000    |  |
| DIN 43650         | PEAC0181200    | PEAC1181200    | PEAC0171200     | PEAC1171200    |  |




PDV315 - PEAC131 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0,5 Udc

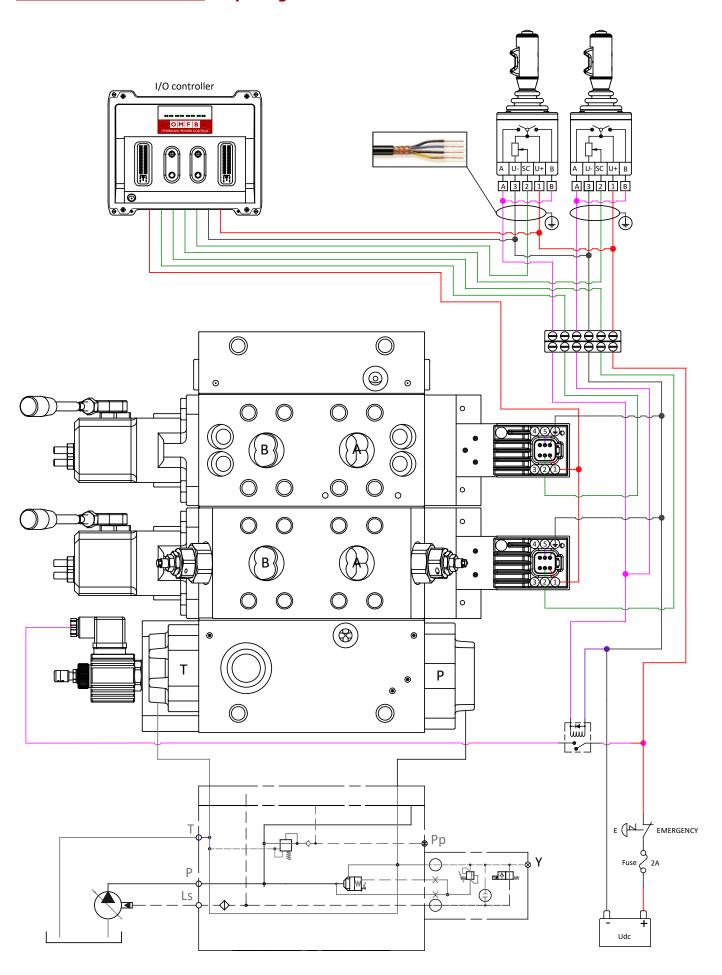





PDV315 - PEAC131 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0,5 Udc








PDV315 - PEAC131 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc





PDV315 - PEAC131 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc





# PDV315 - PEAC132 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V

PEAC132 is a proportional high performance PDV spool actuation with integrated electronics and inductive transducer (LVDT) that operates safely and precisely the main spool movement according to an electrical signal coming from a remote control.

The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

The spool position is detected in the LVDT transducer which generates an electric feed-back signal registered by the electronics. The variation between the input signal and the feed-back signal, actuates the solenoid valves accordingly, so that, the hydraulic pilot pressure will drive the main spool in the right position.

All PEAC132 modules comes with integrated fault monitoring system, available in two version:

Active version Passive version

#### **Active fault monitoring**

When an error state is detected, the two proportional solenoid valves will be automatically deactivated, a red lamp will light-up and drive the spool in neutral position (if it's not seized up). The system will only react to failures of more than 500 ms (in other words there is delay of half a second before anything happens). An alarm signal is sent out through the connector, and minus is opened.

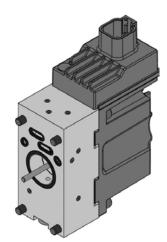
This error state is memorized, and continues until the system is being reset by switching off the supply voltage.

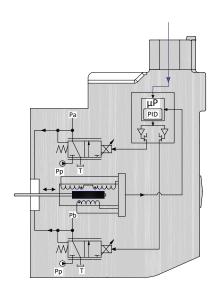
Shortly, when the active fault monitoring system is connected and an error state is detected, the system ensures a fast and

operator free reaction, that will put the complete hydraulic circuit into venting conditions, thus preventing uncontrollable machine movements.

#### **Passive fault monitoring**

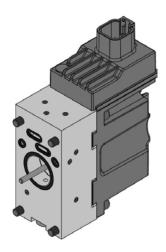
When an error state is detected, the two proportional solenoid valves will not be deactivated, a red lamp will light-up, but still control the main spool.


When a fault condition occurs, after a delay of 250 ms an alarm signal is sent out through a devoted pin


This state is not memorized, and when the faulty state disappears, the alarm signal will turn to passive again.

In order to prevent the electronic from going into an undefined state, any time the system is being triggered or reset, a general check of power supply and the internal clock frequency is made.

The use of PEAC132 module both passive or active version, allows the machines hydraulic system to be made with different level of safety degree that for the choice of which it is essential to know the exactly required functions.


When the PEAC132 module active version is connected with the pump unloading system, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.

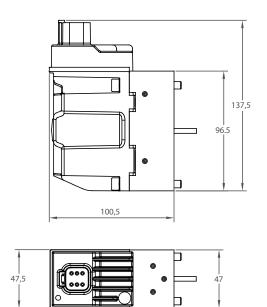




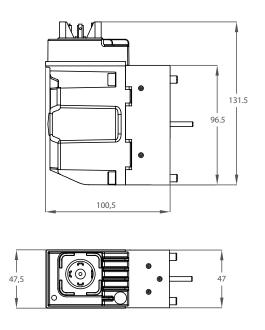


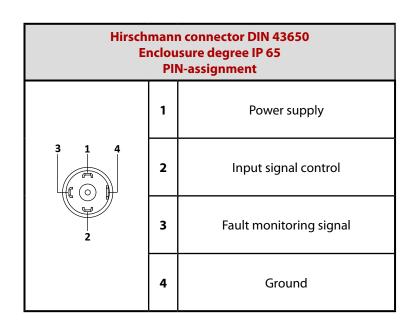
PDV315 - PEAC132 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V




### PEAC132 is defined by:

- Inductive transducer with resolution < 12 μm
- Integrated diagnosis and error memory
- Fault monitoring transistor output for signal source
- Higher spool control accuracy
- EMC performace to
- Low hysteresis
- Quicker reaction time
- Spool direction movement output
- Integrated PWM/Pulse Width Modulation
- Low electrical power

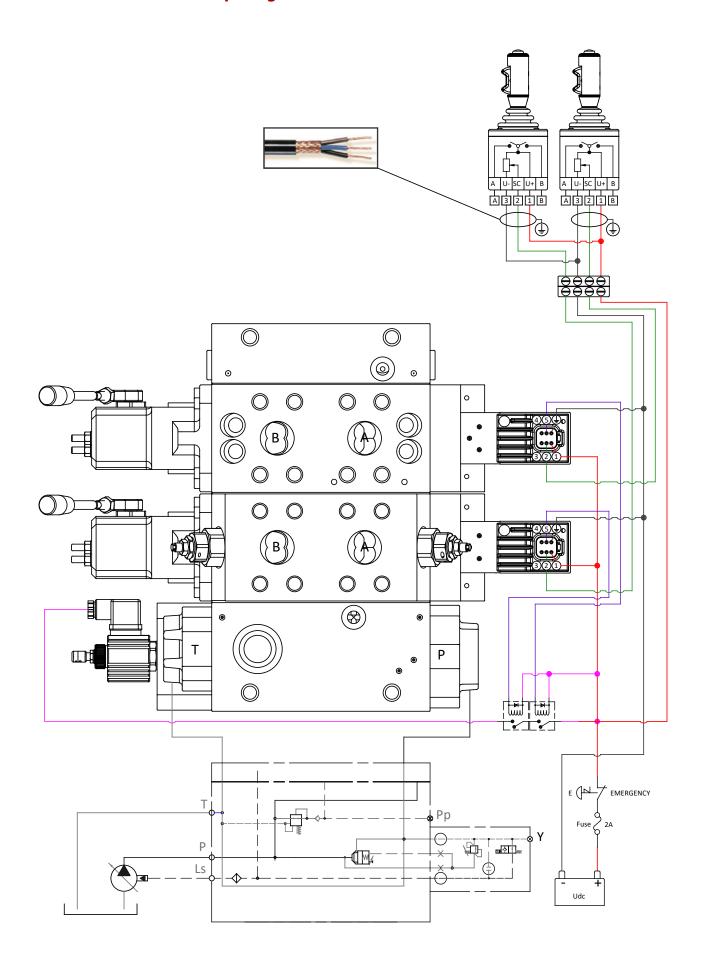

|                                            | PEAC132 Technical data                                                                |                        |
|--------------------------------------------|---------------------------------------------------------------------------------------|------------------------|
| Rated supply voltage                       | 10-30 Vdc                                                                             |                        |
| Max ripple                                 |                                                                                       | 5%                     |
| Signal control                             |                                                                                       | 0-10 V                 |
| Range control signal                       |                                                                                       | 2,5 V to 7,5 V         |
| Neutral spool position                     |                                                                                       | 5 V                    |
| Max threshold signal, <b>A</b> port        | '                                                                                     | 1 V                    |
| Max threshold signal, <b>B</b> port        |                                                                                       | 1 V                    |
| Max current signal @ rated voltage         |                                                                                       | 48 mA                  |
| Input capacitor                            |                                                                                       | 100 ηF                 |
| Signal control impedance                   |                                                                                       | 25 kΩ                  |
| Power consumption                          |                                                                                       | 8,7 W                  |
| Heat insulation                            |                                                                                       | Class H (180°C)        |
| Duty cycle                                 |                                                                                       | ED 100%                |
| Max current consumption                    |                                                                                       | 650 mA                 |
| Current consumption in neutral position    |                                                                                       | 80 mA                  |
| Coil impedance @ 20°C                      | 8,9 Ω                                                                                 |                        |
| Dither frequency                           | 50-200 Hz                                                                             |                        |
| Recommended frequency                      |                                                                                       | 100 Hz                 |
| Enclouser degree (E                        | lectrical wiring excepted)                                                            | IP 66 - IP 67 - IP 69K |
| Weight cast iron body                      |                                                                                       | 1,8 kg                 |
| Weight aluminium body                      |                                                                                       | 1,3 kg                 |
|                                            | debugging parameters and set-up function a character AT04-6P (to be matched with AT06 |                        |
| Fault monitoring system                    | Max current on safety output (pin 5)                                                  | 50 mA                  |
| radic monitoring system                    | Reaction time a fault                                                                 | 500 ms                 |
| Max current output signal for spool direct | 50 mA                                                                                 |                        |
| Reaction time (constant voltage)           | From neutral position to max spool travel                                             | 110 - 140 ms           |
| heaction time (constant voltage)           | From max spool travel to neutral                                                      | 70 - 90 ms             |
| Description time (secretarily societals)   | From neutral position to max spool travel                                             | 130 - 170 ms           |
| Reaction time (neutral switch)             | From max spool travel to neutral                                                      | 70 - 90 ms             |




PDV315 - PEAC132 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal 0 ÷ 10 V - Electrical connectors

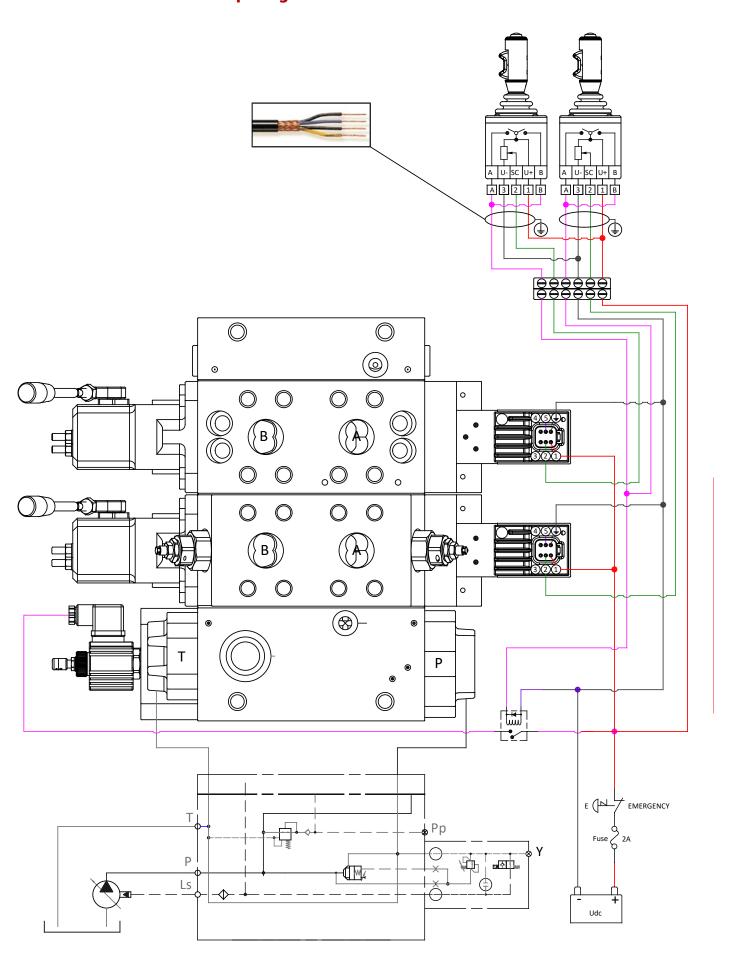


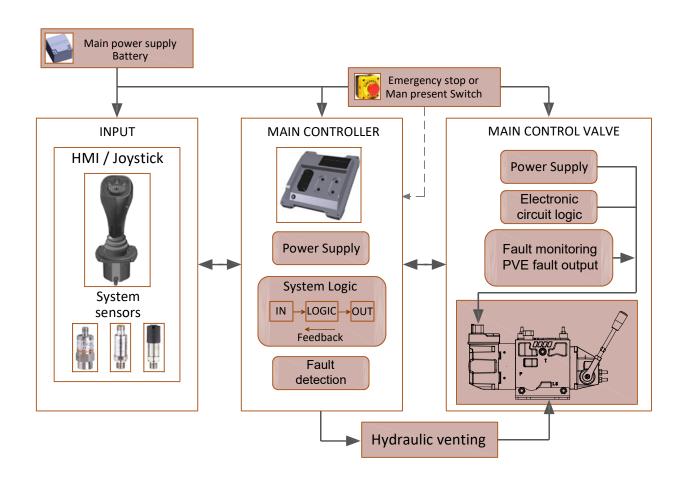
| Deutsch connector AT04-6P<br>Enclousure degree IP 69K<br>PIN-assignment |   |                         |                                     |
|-------------------------------------------------------------------------|---|-------------------------|-------------------------------------|
| 1 Power supply                                                          |   |                         |                                     |
| 1 2 3                                                                   | 2 | Input signal control    |                                     |
|                                                                         | 3 | CAN-high                | <b>A</b> port-spool movement signal |
|                                                                         | 4 | CAN-low                 | <b>B</b> port-spool movement signal |
| 6 5 4                                                                   | 5 | Fault monitoring signal |                                     |
| <b>6</b> Ground                                                         |   | round                   |                                     |





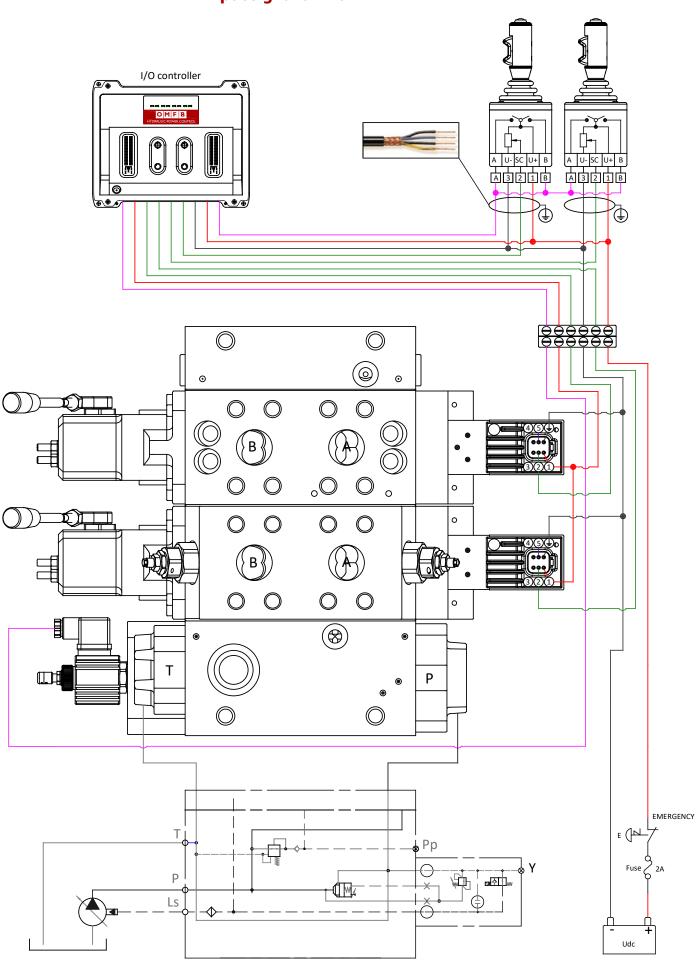

|                   | Code numbers   |                |                |                |
|-------------------|----------------|----------------|----------------|----------------|
| Connector version | Active version |                | Passive        | version        |
|                   | Cast-iron body | Aluminium body | Cast-iron body | Aluminium body |
| Deutsch AT04-6P   | PEAC0182000    | PEAC1182000    | PEAC0172000    | PEAC1172000    |
| DIN 43650         | PEAC0182200    | PEAC1182200    | PEAC0172200    | PEAC1172200    |





PDV315 - PEAC132 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V

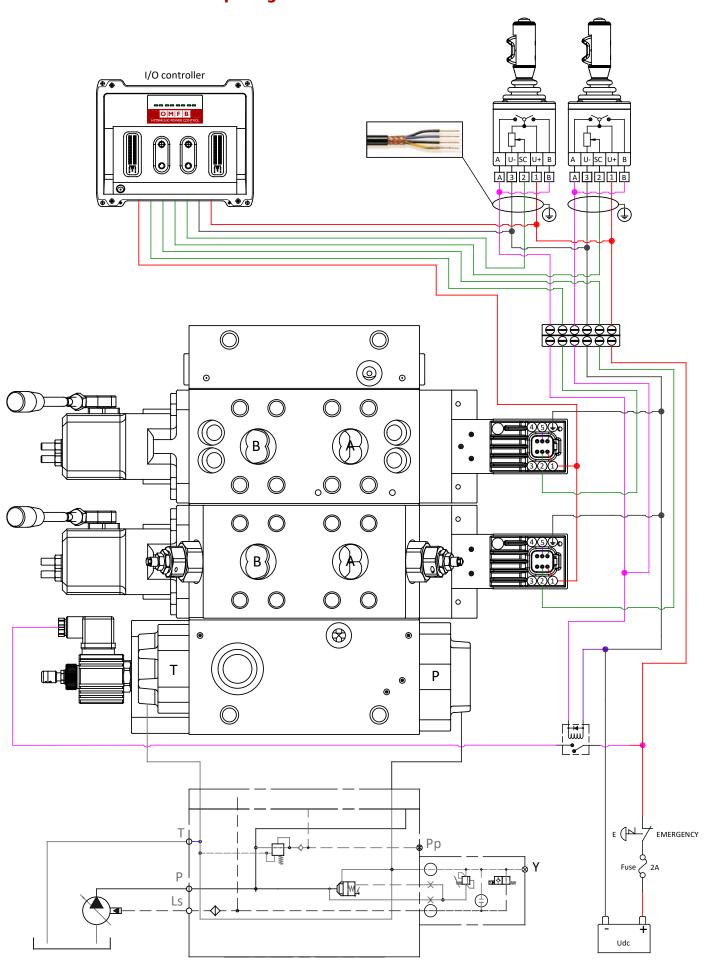





PDV315 - PEAC132 Electro-hydraulic proportional actuation. Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V








PDV315 - PEAC132 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V





PDV315 - PEAC132 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V





### PDV315 - PEAC136 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal 4 ÷ 20 mA

PEAC136 is a proportional high performance PDV spool actuation with integrated electronics and inductive transducer (LVDT) that operates safely and precisely the main spool movement according to an electrical signal coming from a remote control.

The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

The spool position is detected in the LVDT transducer which generates an electric feed-back signal registered by the electronics. The variation between the input signal and the feed-back signal, actuates the solenoid valves accordingly, so that, the hydraulic pilot pressure will drive the main spool in the right position.

All PEAC136 modules comes with integrated fault monitoring system, available in two version:

Active version Passive version

#### **Active fault monitoring**

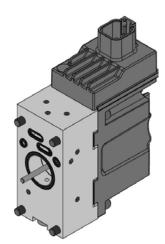
When an error state is detected, the two proportional solenoid valves will be automatically deactivated, a red lamp will light-up and drive the spool in neutral position (if it's not seized up). The system will only react to failures of more than 500 ms (in other words there is delay of half a second before anything happens). An alarm signal is sent out through the connector, and minus is opened.

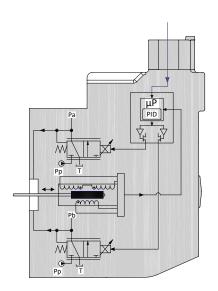
This error state is memorized, and continues until the system is being reset by switching off the supply voltage. Shortly, when the active fault monitoring system is connected and an error state is detected, the system ensures a fast and

and an error state is detected, the system ensures a fast and operator free reaction, that will put the complete hydraulic circuit into venting conditions, thus preventing uncontrollable machine movements.

### **Passive fault monitoring**

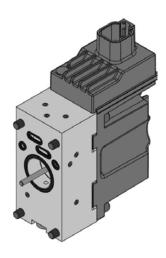
When an error state is detected, the two proportional solenoid valves will not be deactivated, a red lamp will light-up, but still control the main spool.


When a fault condition occurs, after a delay of 250 ms an alarm signal is sent out through a devoted pin


This state is not memorized, and when the faulty state disappears, the alarm signal will turn to passive again.

In order to prevent the electronic from going into an undefined state, any time the system is being triggered or reset, a general check of power supply and the internal clock frequency is made.

The use of PEAC136 module both passive or active version, allows the machines hydraulic system to be made with different level of safety degree that for the choice of which it is essential to know the exactly required functions.


When the PEAC136 module active version is connected with the pump unloading system, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.

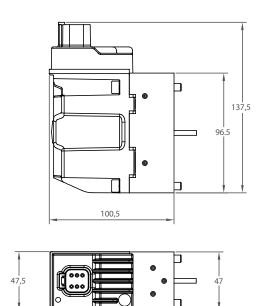


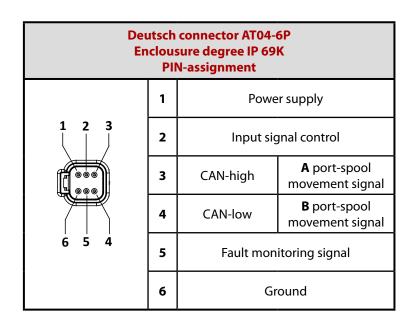


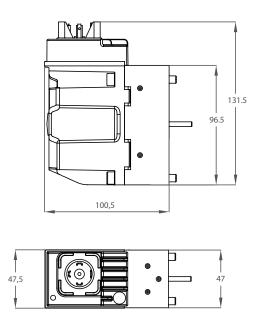


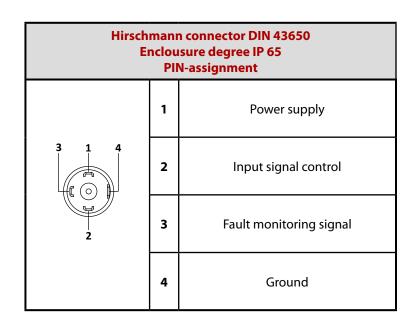
PDV315 - PEAC136 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 4 ÷ 20 mA




### PEAC136 is defined by:


- Inductive transducer with resolution  $< 12 \mu m$
- Integrated diagnosis and error memory
- Fault monitoring transistor output for signal source
- Higher spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Low hysteresis
- Quicker reaction time
- Spool direction movement output
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

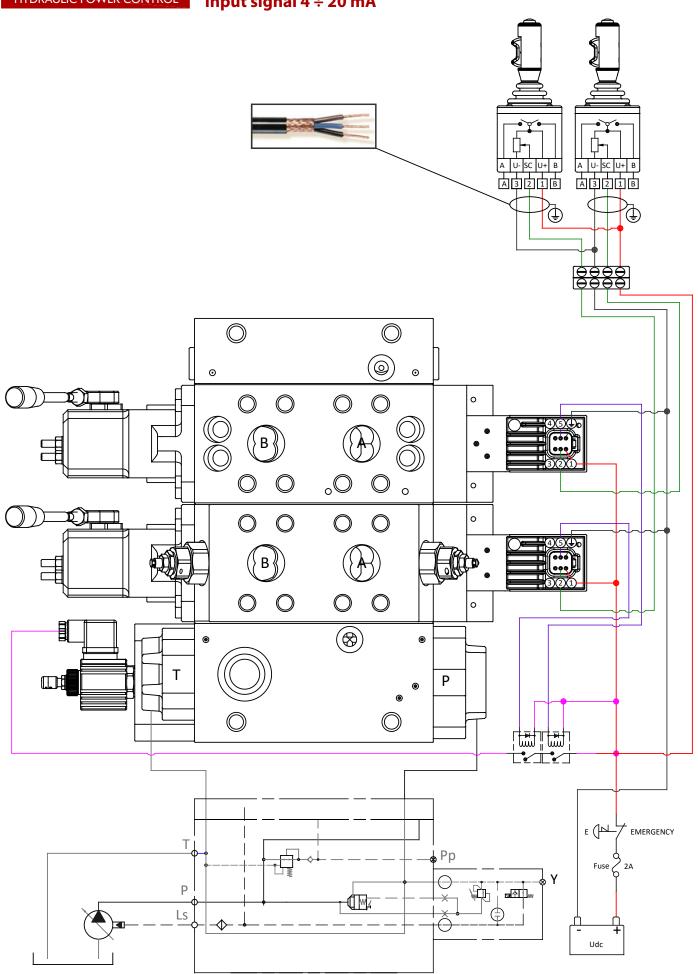

| PEAC136 Technical data                     |                                                                                            |                     |  |  |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------|---------------------|--|--|--|
| Rated supply voltage                       | 10 ÷ 30 Vdc                                                                                |                     |  |  |  |
| Max ripple                                 |                                                                                            | 5%                  |  |  |  |
| Signal control                             |                                                                                            | 4 ÷ 20 mA           |  |  |  |
| Range control signal                       |                                                                                            | 4 mA to 20 mA       |  |  |  |
| Neutral spool position                     |                                                                                            | 12 mA               |  |  |  |
| Max threshold signal, <b>A</b> port        |                                                                                            | 1,5 mA              |  |  |  |
| Max threshold signal, <b>B</b> port        |                                                                                            | 1,5 mA              |  |  |  |
| Max current signal @ rated voltage         |                                                                                            | 48 mA               |  |  |  |
| Input capacitor                            |                                                                                            | 100 ηF              |  |  |  |
| Signal control impedance                   |                                                                                            | 220 Ω               |  |  |  |
| Power consumption                          |                                                                                            | 8,7 W               |  |  |  |
| Heat insulation                            |                                                                                            | Class H (180°C)     |  |  |  |
| Duty cycle                                 | ED 100%                                                                                    |                     |  |  |  |
| Max current consumption                    | 650 mA                                                                                     |                     |  |  |  |
| Current consumption in neutral position    | 80 mA                                                                                      |                     |  |  |  |
| Coil impedance @ 20°C                      | 8,9 Ω                                                                                      |                     |  |  |  |
| Dither frequency                           | 50 ÷ 200 Hz                                                                                |                     |  |  |  |
| Recommended frequency                      | 100 Hz                                                                                     |                     |  |  |  |
| Enclouser degree (E                        | ectrical wiring excepted)                                                                  | IP65 - IP66 - IP69K |  |  |  |
| Weight cast iron body                      |                                                                                            | 1,8 kg              |  |  |  |
| Weight aluminium body                      |                                                                                            | 1,3 kg              |  |  |  |
|                                            | on, debugging parameters and set-up function connector ATO4-6P, only (to be matched with A |                     |  |  |  |
| Fault monitoring system                    | Max current on safety output ( pin 5 )                                                     | 50 mA               |  |  |  |
| radic monitoring system                    | Reaction time a fault                                                                      | 500 ms              |  |  |  |
| Max current output signal for spool direct | 50 mA                                                                                      |                     |  |  |  |
| Reaction time (constant voltage)           | From neutral position to max spool travel                                                  | 110 ÷ 140 ms        |  |  |  |
| neaction time (constant voitage)           | From max spool travel to neutral                                                           | 70 ÷ 90 ms          |  |  |  |
| Reaction time (neutral switch)             | From neutral position to max spool travel                                                  | 130 ÷ 170 ms        |  |  |  |
| neaction time (neutral switch)             | From max spool travel to neutral                                                           | 70 ÷ 90 ms          |  |  |  |




PDV315 - PEAC136 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 4 ÷ 20 mA - Electrical connectors

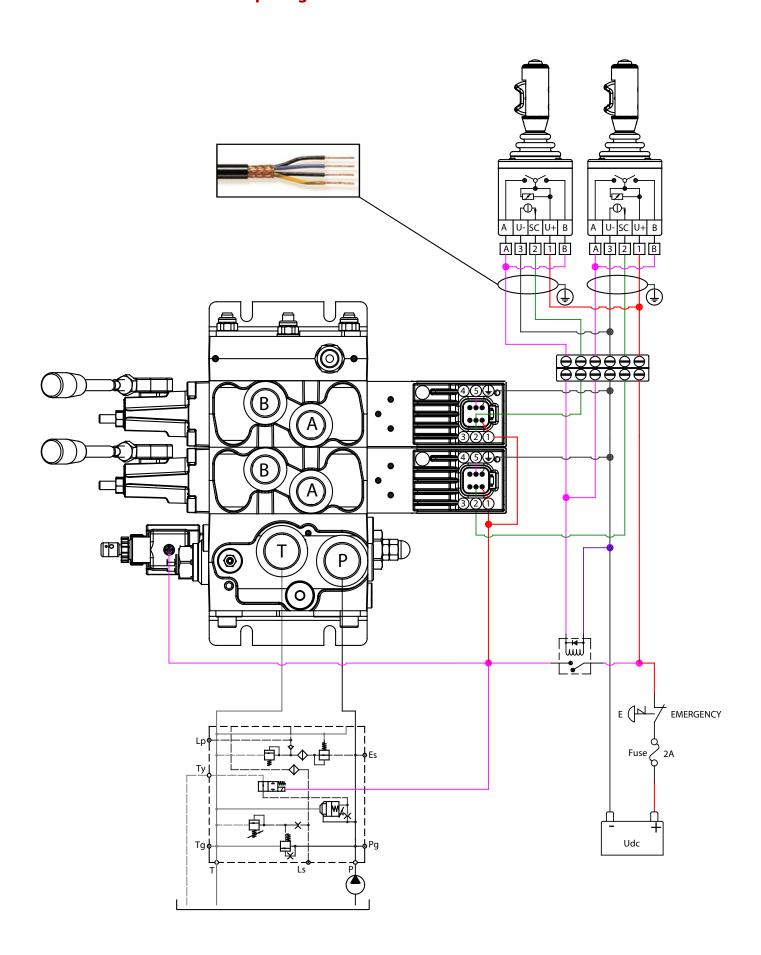


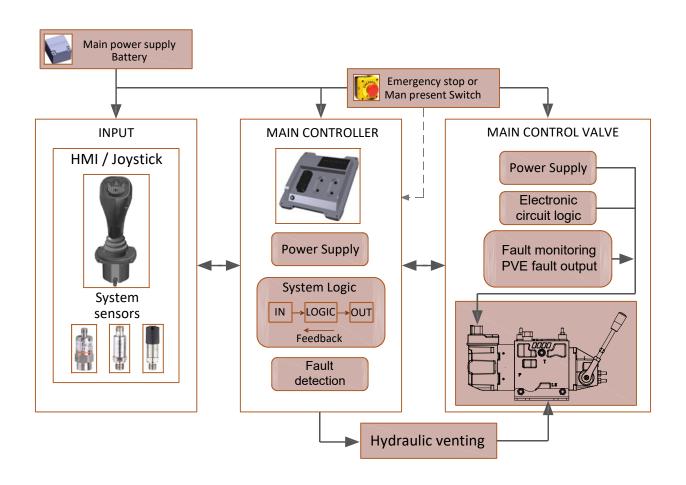






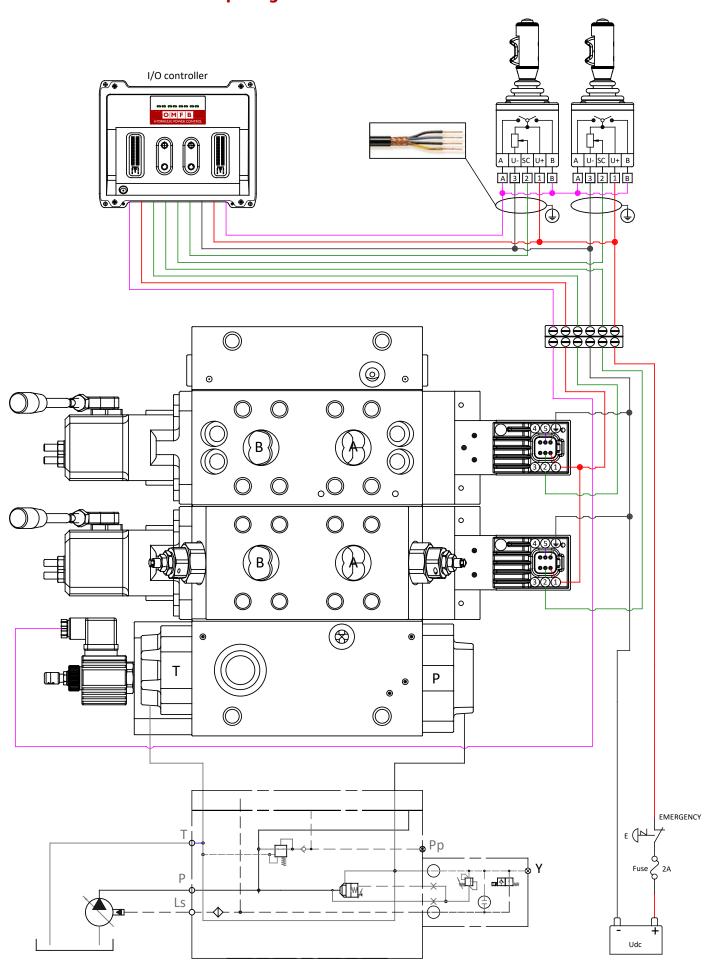

|                   | Code numbers   |                |                |                |
|-------------------|----------------|----------------|----------------|----------------|
| Connector version | Active version |                | Passive        | version        |
|                   | Cast-iron body | Aluminium body | Cast-iron body | Aluminium body |
| Deutsch AT04-6P   | PEAC0186000    | PEAC1186000    | PEAC0176000    | PEAC1176000    |
| DIN 43650         | PEAC0186200    | PEAC1186200    | PEAC0176200    | PEAC1176200    |





PDV315 - PEAC136 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal 4 ÷ 20 mA

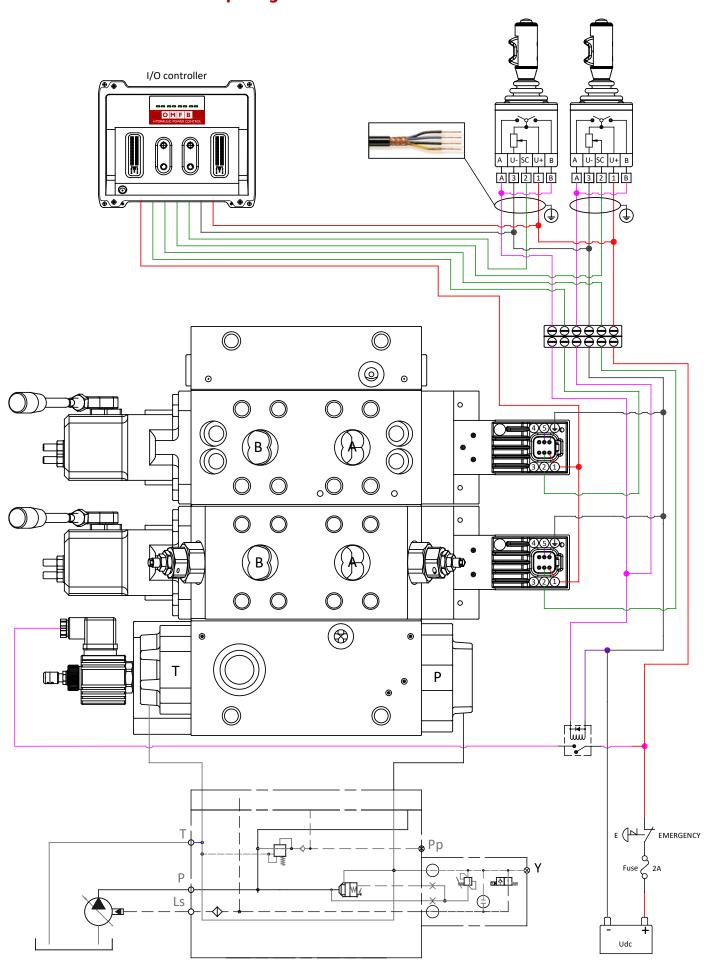





PDV315 - PEAC136 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 4 ÷ 20 mA

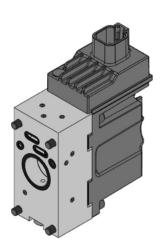


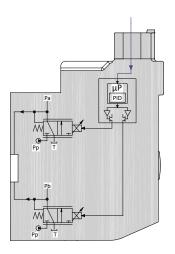





**PDV315 - PEAC136** Electro-hydraulic proportional actuation. **Electrical wiring with OMFB I/O controller Input signal 4 \div 20 \text{ mA}** 







PDV315 - PEAC136 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 4 ÷ 20 mA



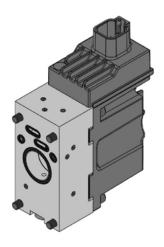


### PDV315 - PEAC031 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0,5 Udc





PEAC031 is a proportional open loop spool actuation with integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.


The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

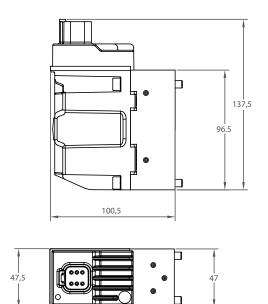
PEAC031 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

PEAC031 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

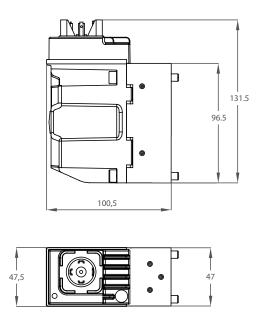


PDV315 - PEAC031 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0,5 Udc




### PEAC031 is defined by:

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

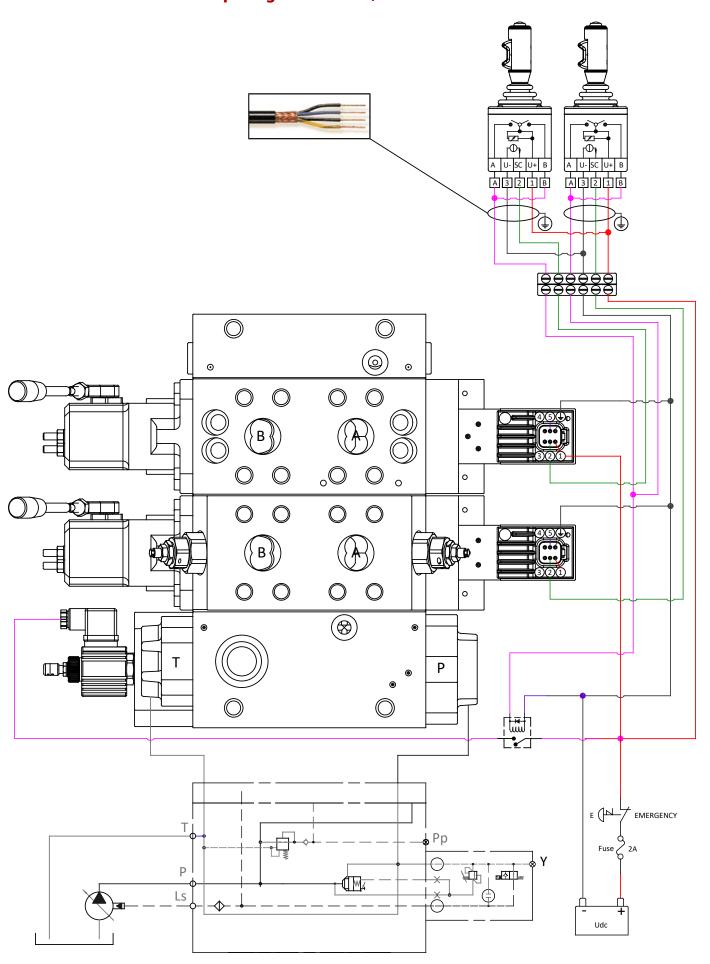

|                                         | PEAC031 Technical data                                                                  |                        |
|-----------------------------------------|-----------------------------------------------------------------------------------------|------------------------|
| Rated supply voltage                    |                                                                                         | 10-30 Vdc              |
| Max ripple                              |                                                                                         | 5%                     |
| Signal control                          |                                                                                         | 0,5 Udc                |
| Range control signal                    |                                                                                         | 0,25 Udc to 0,75 Udc   |
| Neutral spool position                  |                                                                                         | 0,5 Udc                |
| Max threshold signal, <b>A</b> port     |                                                                                         | 1 V                    |
| Max threshold signal, <b>B</b> port     |                                                                                         | 1 V                    |
| Max current signal @ rated voltage      |                                                                                         | 48 mA                  |
| Input capacitor                         |                                                                                         | 100 ηF                 |
| Signal control impedance                |                                                                                         | 25 kΩ                  |
| Power consumption                       |                                                                                         | 8,7 W                  |
| Heat insulation                         |                                                                                         | Class H (180°C)        |
| Duty cycle                              | ED 100%                                                                                 |                        |
| Max current consumption                 | 650 mA                                                                                  |                        |
| Current consumption in neutral position | 80 mA                                                                                   |                        |
| Coil impedance @ 20°C                   | 8,9 Ω                                                                                   |                        |
| Dither frequency                        |                                                                                         | 50-200 Hz              |
| Recommended frequency                   |                                                                                         | 100 Hz                 |
| Enclouser degree (El                    | ectrical wiring excepted)                                                               | IP 66 - IP 67 - IP 69K |
| Weight cast iron body                   |                                                                                         | 1,8 kg                 |
| Weight aluminium body                   | 1,3 kg                                                                                  |                        |
|                                         | debugging parameters and set-up function a h connector AT04-6P (to be matched with AT06 |                        |
| Posetion time (constant valtage)        | From neutral position to max spool travel                                               | 110 - 140 ms           |
| Reaction time (constant voltage)        | From max spool travel to neutral                                                        | 70 - 90 ms             |
| Reaction time (neutral switch)          | From neutral position to max spool travel                                               | 130 - 170 ms           |
|                                         | From max spool travel to neutral                                                        | 70 - 90 ms             |

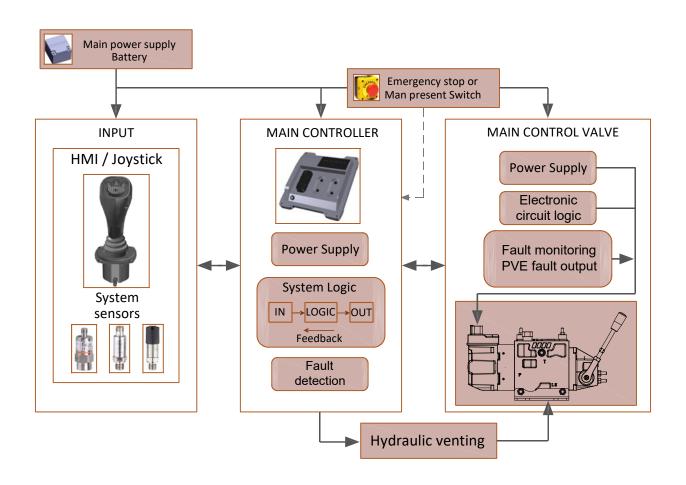


PDV315 - PEAC031 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal 0,5 Udc - Electrical connectors



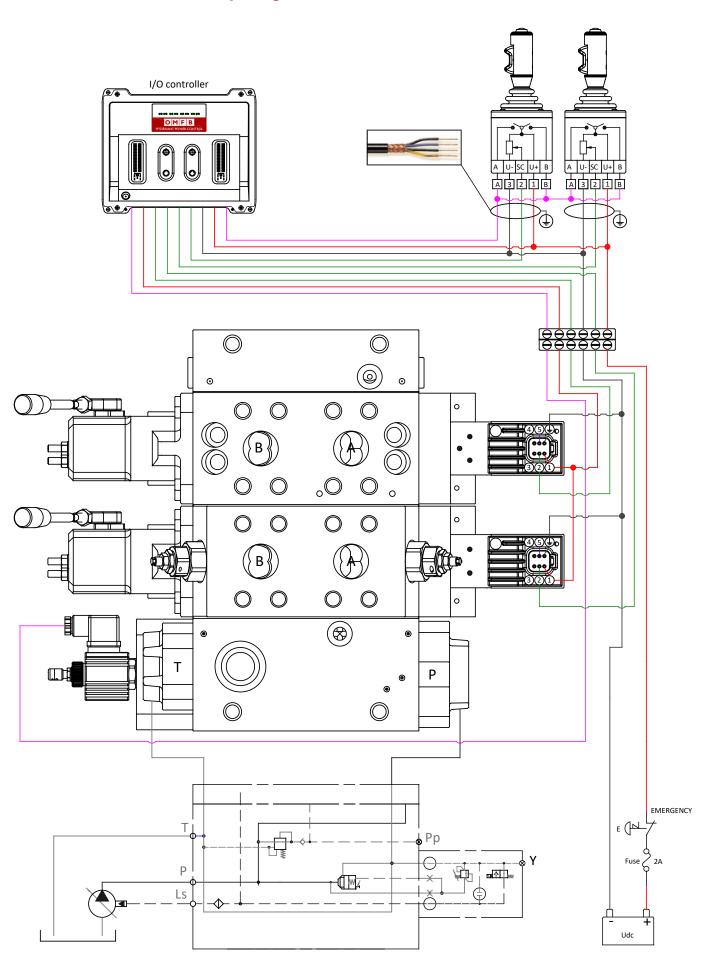
| Deutsch connector AT04-6P<br>Enclousure degree IP 69K<br>PIN-assignment |   |                      |  |
|-------------------------------------------------------------------------|---|----------------------|--|
|                                                                         | 1 | Power supply         |  |
| 1 2 3                                                                   | 2 | Input signal control |  |
|                                                                         | 3 | CAN-high             |  |
|                                                                         | 4 | CAN-low              |  |
|                                                                         | 5 | Free                 |  |
|                                                                         | 6 | Ground               |  |



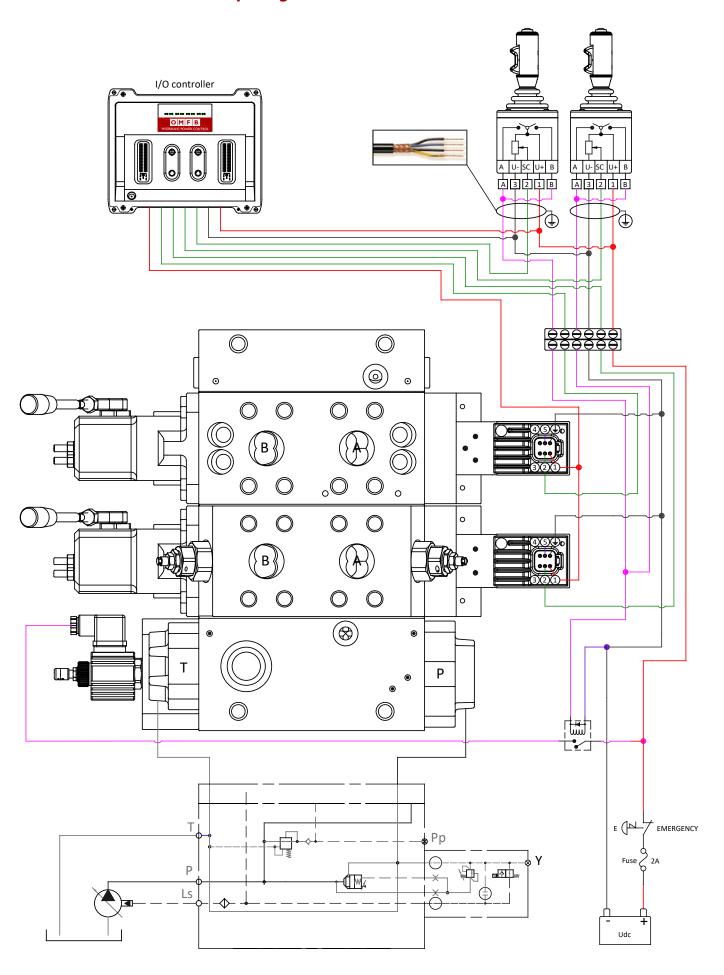

|                   | Code numbers   |                |                |                |
|-------------------|----------------|----------------|----------------|----------------|
| Connector version | Active version |                | Passive        | version        |
|                   | Cast-iron body | Aluminium body | Cast-iron body | Aluminium body |
| Deutsch AT04-6P   | PEAC0081000    | PEAC1081000    | PEAC0071000    | PEAC1071000    |
| DIN 43650         | PEAC0081200    | PEAC1081200    | PEAC0071200    | PEAC1071200    |



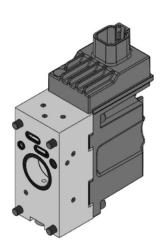

PDV315 - PEAC031 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0,5 Udc

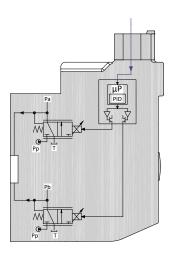







PDV315 - PEAC031 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc




PDV315 - PEAC031 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc

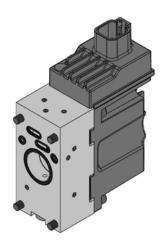


## PDV315 - PEAC032 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0 ÷ 10 V





PEAC032 is a proportional open loop spool actuation with integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.


The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

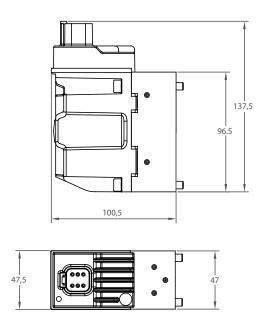
PEAC032 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

PEAC032 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

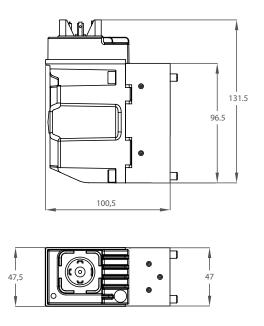


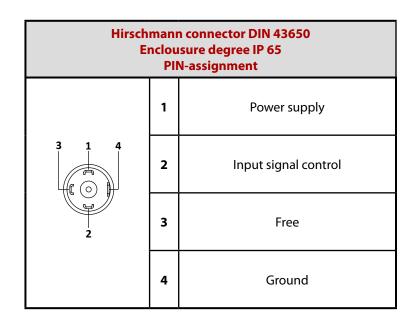
# **PDV315 - PEAC032** Electro-hydraulic proportional actuation **Open loop spool control**, high performance resolution **Input signal control 0 ÷ 10 V**




### PEAC032 is defined by:

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

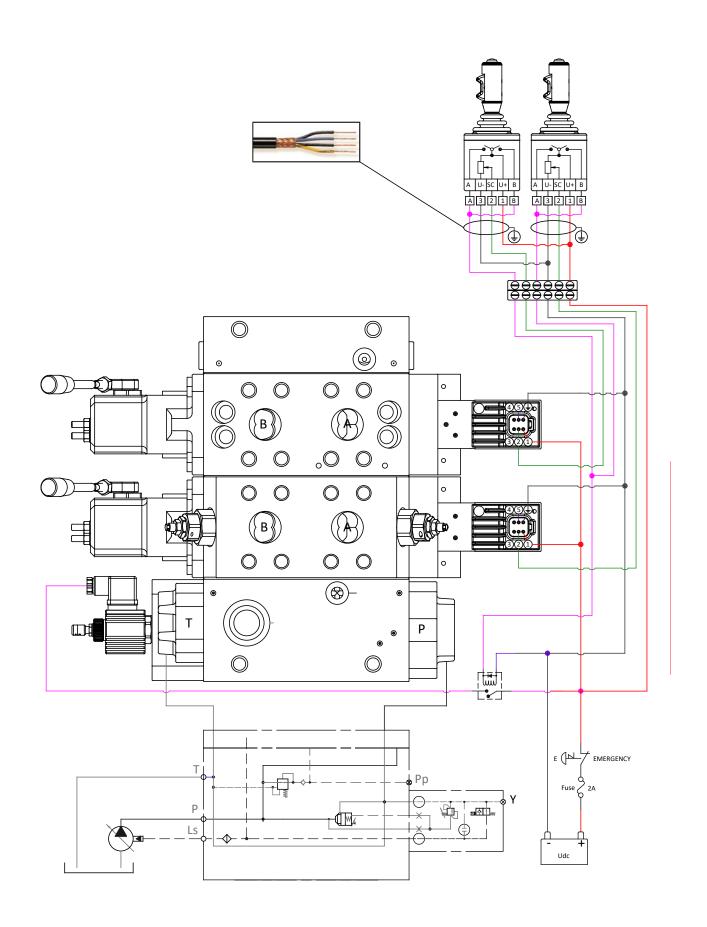

|                                         | PEAC032 Technical data                                                                  |                        |
|-----------------------------------------|-----------------------------------------------------------------------------------------|------------------------|
| Rated supply voltage                    |                                                                                         | 10-30 Vdc              |
| Max ripple                              |                                                                                         | 5%                     |
| Signal control                          |                                                                                         | 0-10 V                 |
| Range control signal                    |                                                                                         | 2,5 V to 7,5 V         |
| Neutral spool position                  |                                                                                         | 5 V                    |
| Max threshold signal, <b>A</b> port     |                                                                                         | 1 V                    |
| Max threshold signal, <b>B</b> port     |                                                                                         | 1 V                    |
| Max current signal @ rated voltage      |                                                                                         | 48 mA                  |
| Input capacitor                         |                                                                                         | 100 ηF                 |
| Signal control impedance                |                                                                                         | 25 kΩ                  |
| Power consumption                       |                                                                                         | 8,7 W                  |
| Heat insulation                         |                                                                                         | Class H (180°C)        |
| Duty cycle                              |                                                                                         | ED 100%                |
| Max current consumption                 | 650 mA                                                                                  |                        |
| Current consumption in neutral position | 80 mA                                                                                   |                        |
| Coil impedance @ 20°C                   | 8,9 Ω                                                                                   |                        |
| Dither frequency                        | 50-200 Hz                                                                               |                        |
| Recommended frequency                   |                                                                                         | 100 Hz                 |
| Enclouser degree (E                     | ectrical wiring excepted)                                                               | IP 66 - IP 67 - IP 69K |
| Weight cast iron body                   |                                                                                         | 1,8 kg                 |
| Weight aluminium body                   | 1,3 kg                                                                                  |                        |
|                                         | debugging parameters and set-up function a h connector AT04-6P (to be matched with AT06 |                        |
| Donation time (ttt                      | From neutral position to max spool travel                                               | 110 - 140 ms           |
| Reaction time (constant voltage)        | From max spool travel to neutral                                                        | 70 - 90 ms             |
| Departies time of a section level 1     | From neutral position to max spool travel                                               | 130 - 170 ms           |
| Reaction time (neutral switch)          | From max spool travel to neutral                                                        | 70 - 90 ms             |

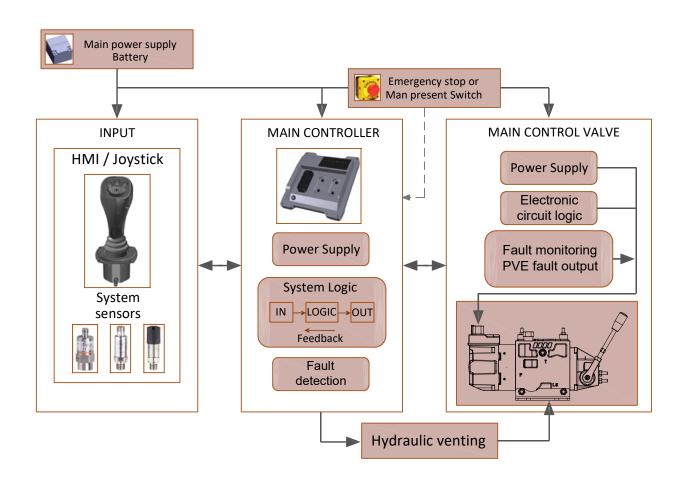



# PDV315 - PEAC032 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal 0 ÷ 10 V - Electrical connectors



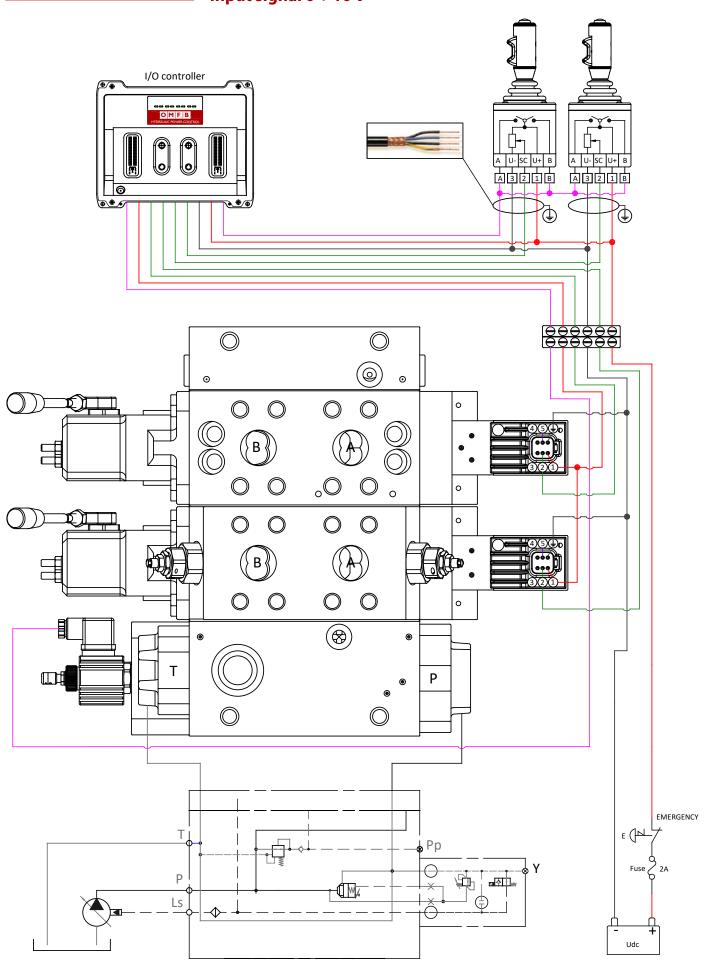
| Deutsch connector AT04-6P<br>Enclousure degree IP 69K<br>PIN-assignment |   |                      |  |
|-------------------------------------------------------------------------|---|----------------------|--|
| 1 Power supply                                                          |   |                      |  |
| 1 2 3                                                                   | 2 | Input signal control |  |
|                                                                         | 3 | CAN-high             |  |
|                                                                         | 4 | CAN-low              |  |
| 6 5 4                                                                   | 5 | Free                 |  |
|                                                                         | 6 | Ground               |  |



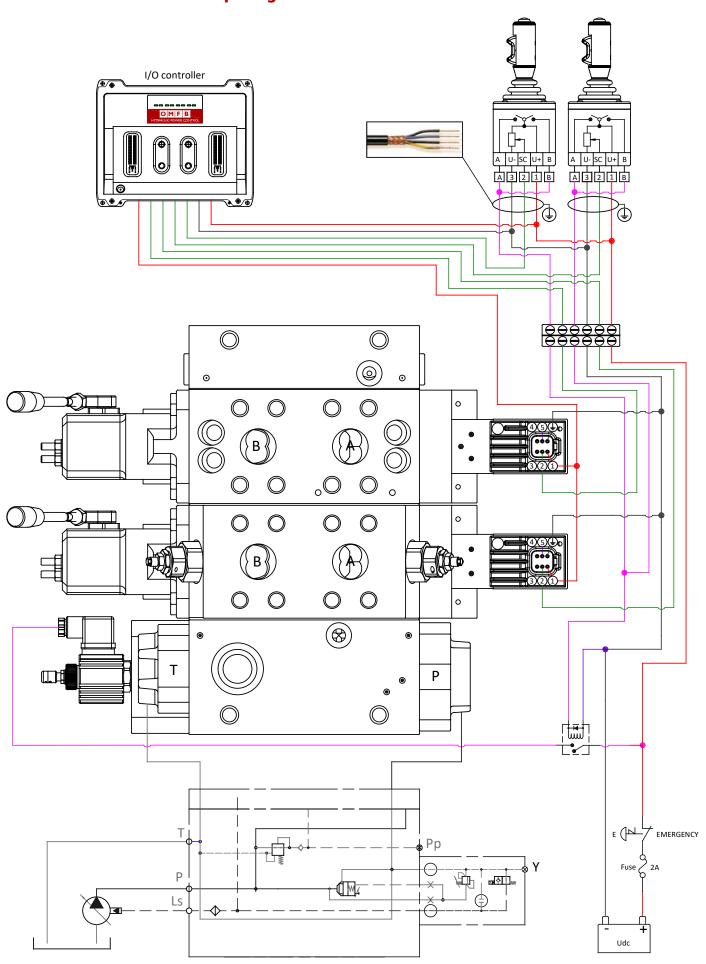

|                   | Code numbers   |                |                |                |
|-------------------|----------------|----------------|----------------|----------------|
| Connector version | Active version |                | Passive        | version        |
|                   | Cast-iron body | Aluminium body | Cast-iron body | Aluminium body |
| Deutsch AT04-6P   | PEAC0082000    | PEAC1082000    | PEAC0072000    | PEAC1072000    |
| DIN 43650         | PEAC0082200    | PEAC1082200    | PEAC0072200    | PEAC1072200    |




**PDV315 - PEAC032** Electro-hydraulic proportional actuation. **Open loop spool control**, high performance resolution **Input signal control 0 ÷ 10 V** 

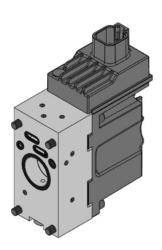


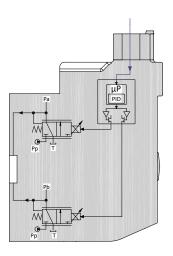





PDV315 - PEAC032 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V







PDV315 - PEAC032 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V



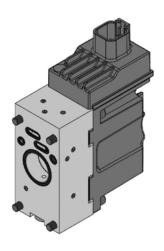


PDV315 - PEAC036 Electro-hydraulic proportional actuation Open loop spool control Input signal 4 ÷ 20 mA





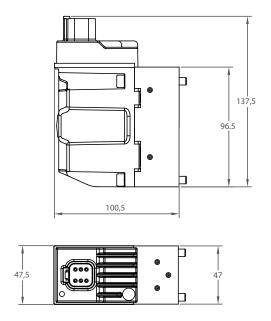
PEAC036 is a proportional open loop spool actuation with integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.


The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

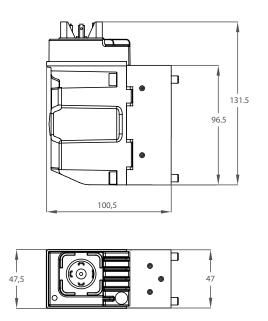
PEAC036 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

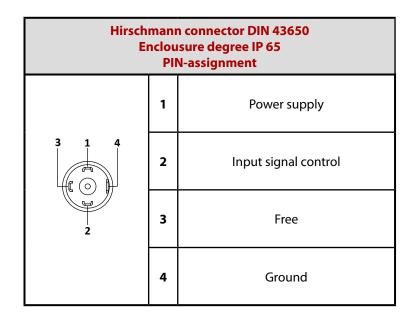
PEAC036 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.




### PDV315 - PEAC036 Electro-hydraulic proportional actuation Open loop spool control Input signal 4 ÷ 20 mA



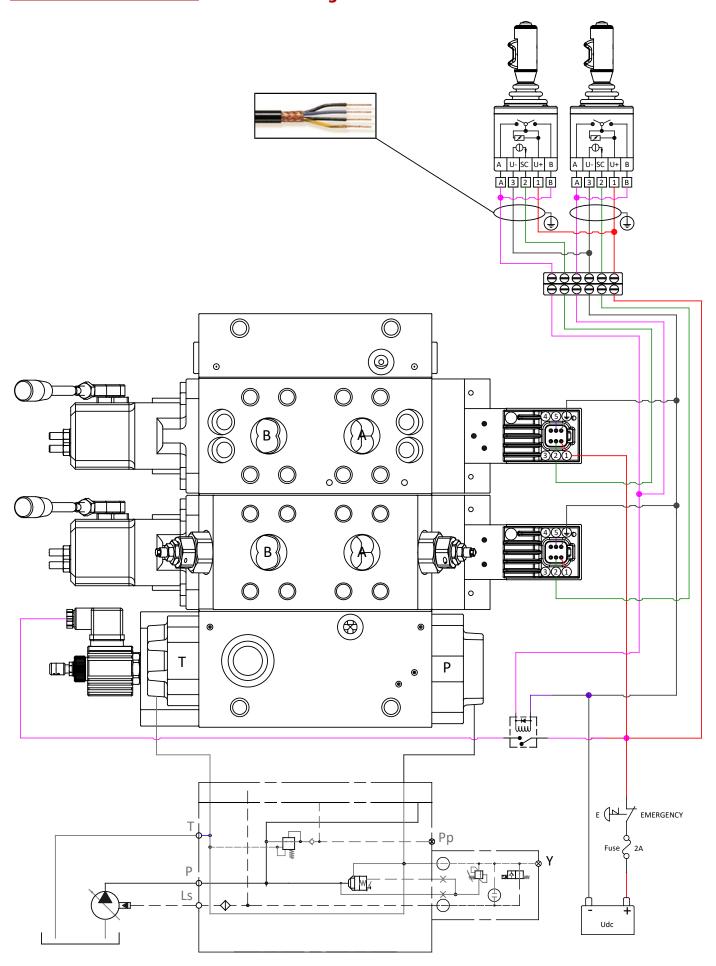

### PEAC036 is defined by:


- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

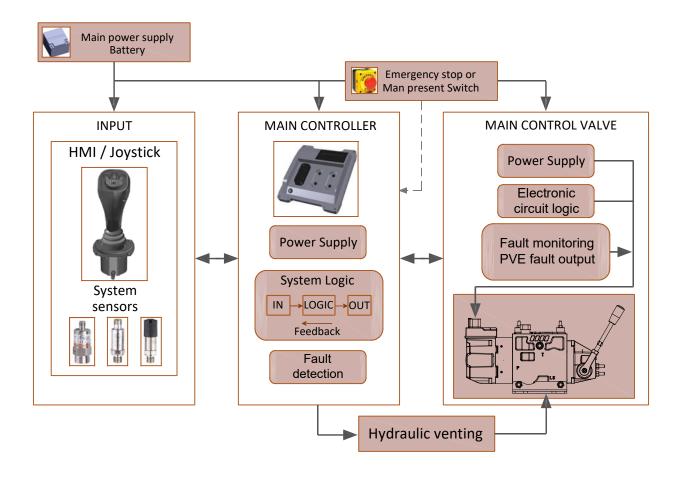
| PEAC036 Technical data                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |  |  |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|
| Rated supply voltage                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-30 Vdc       |  |  |
| Max ripple                              | 5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |  |  |
| Signal control                          | 4-20 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |  |  |
| Range control signal                    | 4 mA to 20 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |  |  |
| Neutral spool position                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12 mA           |  |  |
| Max threshold signal, <b>A</b> port     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,5 mA          |  |  |
| Max threshold signal, <b>B</b> port     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,5 mA          |  |  |
| Input capacitor                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 ηF          |  |  |
| Input impedance                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 220 Ω           |  |  |
| Power consumption                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8,7 W           |  |  |
| Heat insulation                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Class H (180°C) |  |  |
| Duty cycle                              | ED 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |  |  |
| Max current consumption                 | 650 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |
| Current consumption in neutral position | 80 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |
| Max current start spool travel          | 140 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |
| Max current end spool travel            | 450 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |  |  |
| Coil impedance @ 20°C                   | 8,9 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |  |  |
| Signal control impedance                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 ΚΩ           |  |  |
| Dither frequency                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50-200 Hz       |  |  |
| Recommended frequency                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100 Hz          |  |  |
| Enclouser degree (Ele                   | IP65 - IP66 - IP69K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |  |  |
|                                         | n, debugging parameters and set-up function processory on ATO4-6P, only (to be matched with ATO4-6P, only (to be with ATO4 |                 |  |  |
|                                         | From neutral position to max spool travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110 - 140 ms    |  |  |
| Reaction time (constant voltage)        | From max spool travel to neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70 - 90 ms      |  |  |
| D                                       | From neutral position to max spool travel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 130 - 170 ms    |  |  |
| Reaction time (neutral switch)          | From max spool travel to neutral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70 - 90 ms      |  |  |



| Deutsch connector AT04-6P<br>Enclousure degree IP 69K<br>PIN-assignment |   |                      |  |  |  |
|-------------------------------------------------------------------------|---|----------------------|--|--|--|
| 1 2 3                                                                   | 1 | Power supply         |  |  |  |
|                                                                         | 2 | Input signal control |  |  |  |
|                                                                         | 3 | CAN-high             |  |  |  |
|                                                                         | 4 | CAN-low              |  |  |  |
|                                                                         | 5 | Free                 |  |  |  |
|                                                                         | 6 | Ground               |  |  |  |

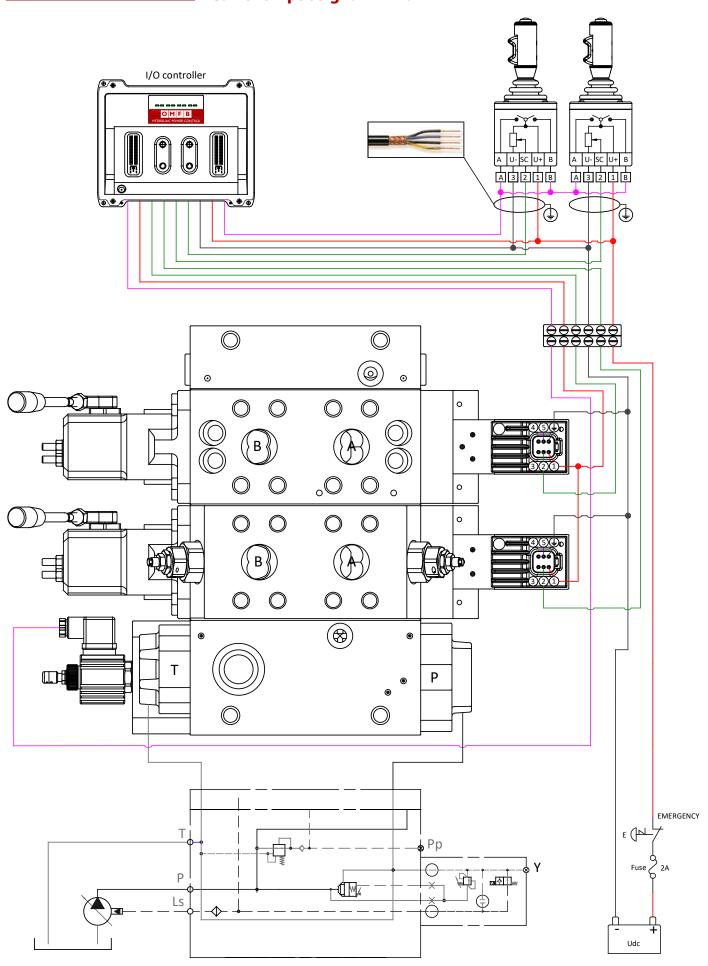






|                   | Code numbers   |                |                 |                |  |  |
|-------------------|----------------|----------------|-----------------|----------------|--|--|
| Connector version | Active         | version        | Passive version |                |  |  |
|                   | Cast-iron body | Aluminium body | Cast-iron body  | Aluminium body |  |  |
| Deutsch AT04-6P   | PEAC0086000    | PEAC1086000    | PEAC0076000     | PEAC1076000    |  |  |
| DIN 43650         | PEAC0086200    | PEAC1086200    | PEAC0076200     | PEAC1076200    |  |  |

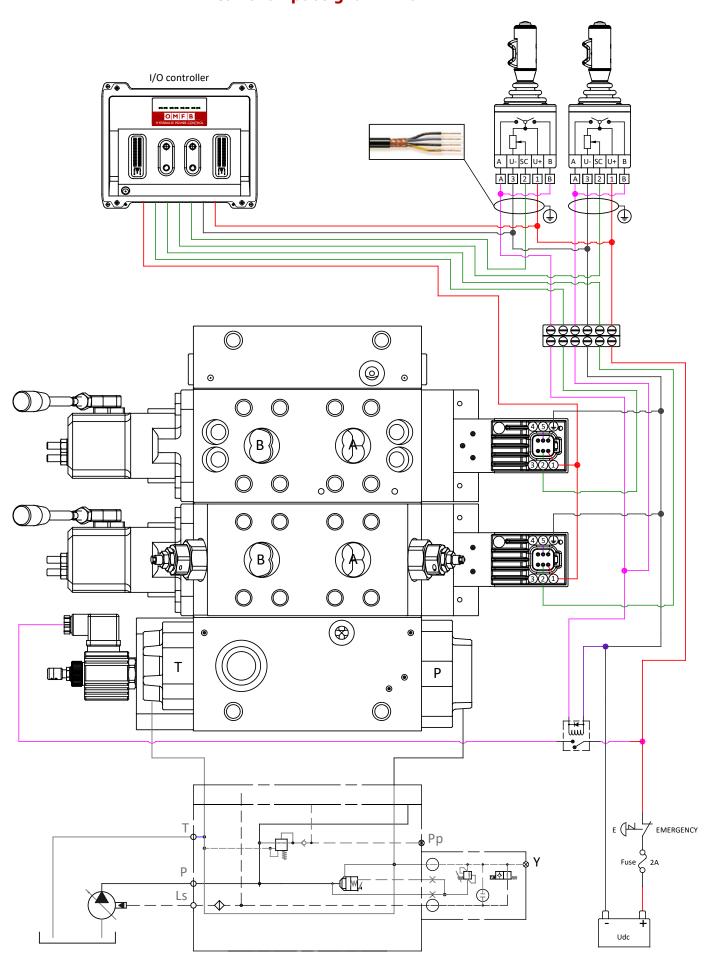


PDV315 - PEAC036 Electro-hydraulic proportional actuation. Input signal control 4-20 mA Electrical wiring

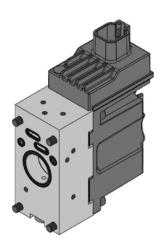


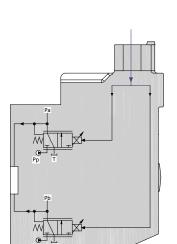





PDV315 - PEAC036 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller Current input signal 4 ÷ 20 mA




PDV315 - PEAC036 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller Current input signal 4 ÷ 20 mA

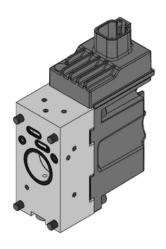


#### PDV315 - PEAD3 Electro-hydraulic proportional actuation Open loop spool control - Current input signal for PWM or supply voltage for ON/OFF control





PEAD3 is a proportional open loop spool actuation without integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.


The input signal by means of the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

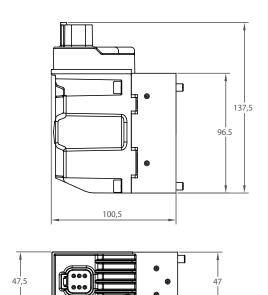
PEAD3 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

PEAD3 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

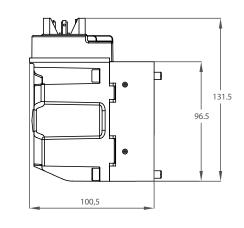


### PDV315 - PEAD3 Electro-hydraulic proportional actuation Open loop spool control - Current input signal for PWM or supply voltage for ON/OFF control

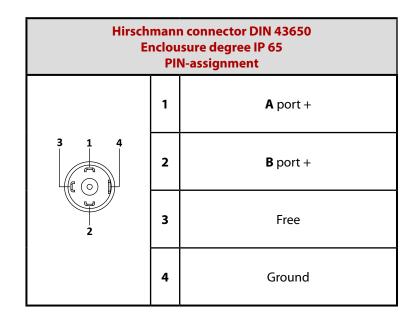


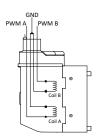

#### PEAD3 is defined by:

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design


|                                         | PEAD3 Technical data                      |                 |                 |  |  |
|-----------------------------------------|-------------------------------------------|-----------------|-----------------|--|--|
| Supply voltage                          |                                           | 12 Vdc          | 24 Vdc          |  |  |
| Voltage range                           | 10-16 V                                   | 20-30 V         |                 |  |  |
| Max ripple                              |                                           | 5%              | 5%              |  |  |
| Current consuption at rated voltage     |                                           | 750 mA @ 12 Vdc | 400 mA @ 24 Vdc |  |  |
| Power consumption                       |                                           | 9 W             | 9,6 W           |  |  |
| R @ 20°C                                |                                           | 8,9 Ω           | 35 Ω            |  |  |
| Start spool travel                      |                                           | 220 mA          | 140 mA          |  |  |
| End spool travel flow control           |                                           | 650 mA          | 350 mA          |  |  |
| Max spool flow in pre-floating position | n                                         | 650 mA          | 350 mA          |  |  |
| Spool floating position                 |                                           | 750 mA          | 400 mA          |  |  |
| Heat insulation                         |                                           | Class H (180°C) |                 |  |  |
| Oil temperature (Recommend              | ed)                                       | 20 ÷ 60 °C      |                 |  |  |
| Oil temperature (Min)                   |                                           | -30 °C          |                 |  |  |
| Oil temperature (Max)                   |                                           | 80 °C           |                 |  |  |
| Ambient temperature                     |                                           | -30 ÷ 60 °C     |                 |  |  |
| PWM frequency                           |                                           | 50 ÷ 200 Hz     |                 |  |  |
| Best frequency                          |                                           | 100 Hz          |                 |  |  |
| Duty cycle                              |                                           | 100% ED         |                 |  |  |
| Plug connector                          |                                           | 6 pins Deutscl  | n or 4 pins DIN |  |  |
| Enclouser degree                        | (Electrical wiring excepted)              | IP6             | 59K             |  |  |
| Weight cast iron body                   |                                           | 1, 8            | 3 kg            |  |  |
| Weight Aluminium body                   |                                           | 1,3             | kg              |  |  |
| Max current output signal for spool d   | irection moviment                         | 50              | mA              |  |  |
| Position time (constant voltage)        | From neutral position to max spool travel | 110 - 1         | 140 ms          |  |  |
| Reaction time (constant voltage)        | From max spool travel to neutral          | 70 - 90 ms      |                 |  |  |
| Reaction time (neutral switch)          | From neutral position to max spool travel | 130 - 170 ms    |                 |  |  |
| neaction time (neutral switch)          | From max spool travel to neutral          | 70 - 9          | 90 ms           |  |  |



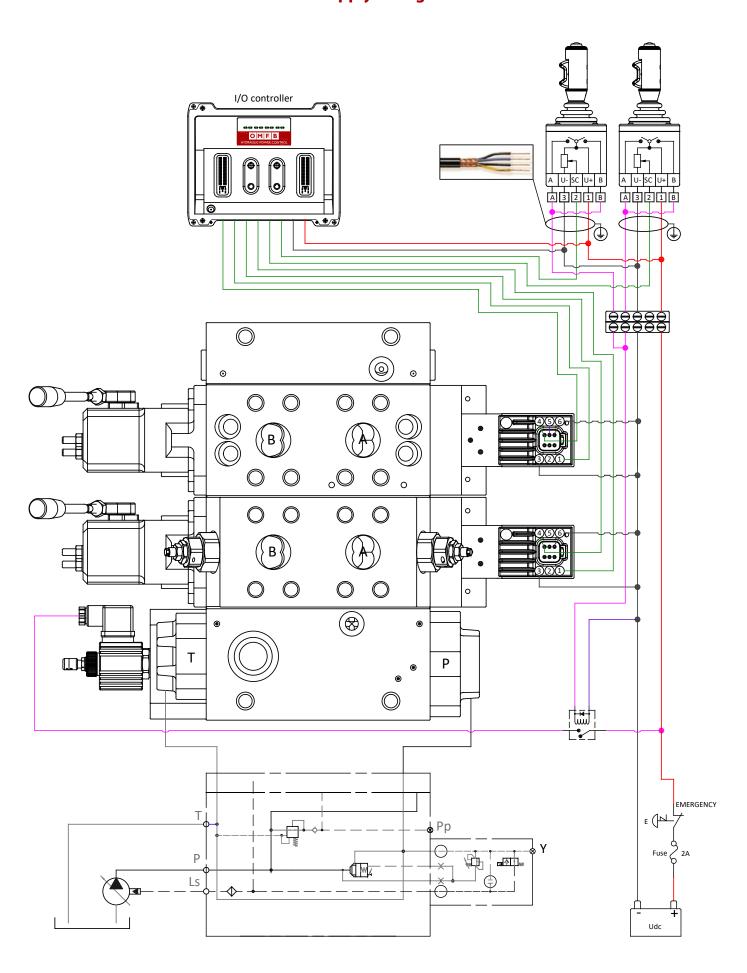


### PDV315 - PEAD3 Electro-hydraulic proportional actuation Open loop spool control - Current input signal for PWM or supply voltage for ON/OFF control - Electrical connectors




| Deutsch connector AT04-6P<br>Enclousure degree IP 69K<br>PIN-assignment |   |                 |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------|---|-----------------|--|--|--|--|--|--|--|
|                                                                         | 1 | <b>A</b> port + |  |  |  |  |  |  |  |
| 1 2 3                                                                   | 2 | Free            |  |  |  |  |  |  |  |
|                                                                         | 3 | <b>A</b> port - |  |  |  |  |  |  |  |
|                                                                         | 4 | <b>B</b> port + |  |  |  |  |  |  |  |
| 6 5 4                                                                   | 5 | Free            |  |  |  |  |  |  |  |
|                                                                         | 6 | <b>B</b> port - |  |  |  |  |  |  |  |

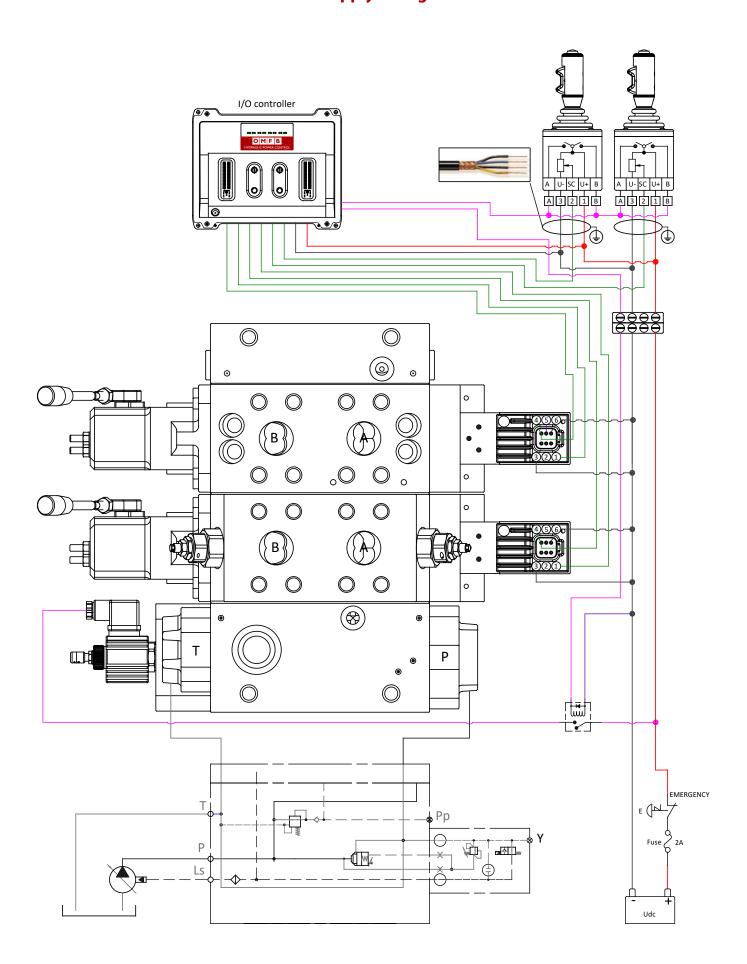




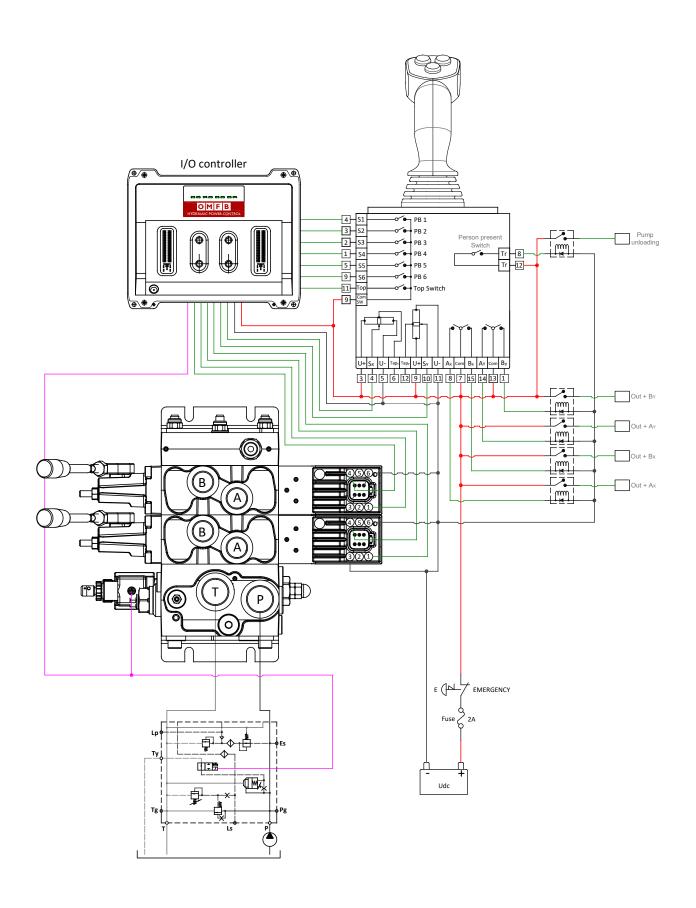




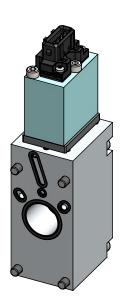

|                   | Code numbers   |                |                |                |  |  |  |  |  |  |
|-------------------|----------------|----------------|----------------|----------------|--|--|--|--|--|--|
| Connector version | 12             | 2 V            | 24 V           |                |  |  |  |  |  |  |
|                   | Cast-iron body | Aluminium body | Cast-iron body | Aluminium body |  |  |  |  |  |  |
| Deutsch AT04-6P   | PEAD0100002    | PEAD1100002    | PEAD0200002    | PEAD1200002    |  |  |  |  |  |  |
| DIN 43650         | PEAD0120002    | PEAD1120002    | PEAD0220002    | PEAD1220002    |  |  |  |  |  |  |

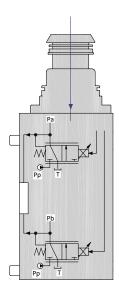



PDV315 - PEAD3 Electro-hydraulic proportional actuation.
Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control







# PDV315 - PEAD3 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control





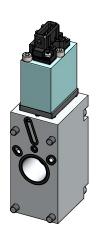



#### PDV315 - PEAP3 Electro-hydraulic proportional actuation Open loop spool control - Current input signal for PWM or supply voltage for ON/OFF control





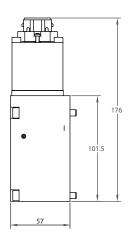
PEAP3 is a proportional open loop spool actuation without integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.

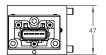

The input signal by means of the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

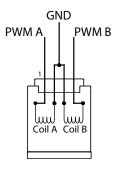
PEAP3 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

PEAP3 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.




### PDV315 - PEAP3 Electro-hydraulic proportional actuation Open loop spool control - Current input signal for PWM or supply voltage for ON/OFF control



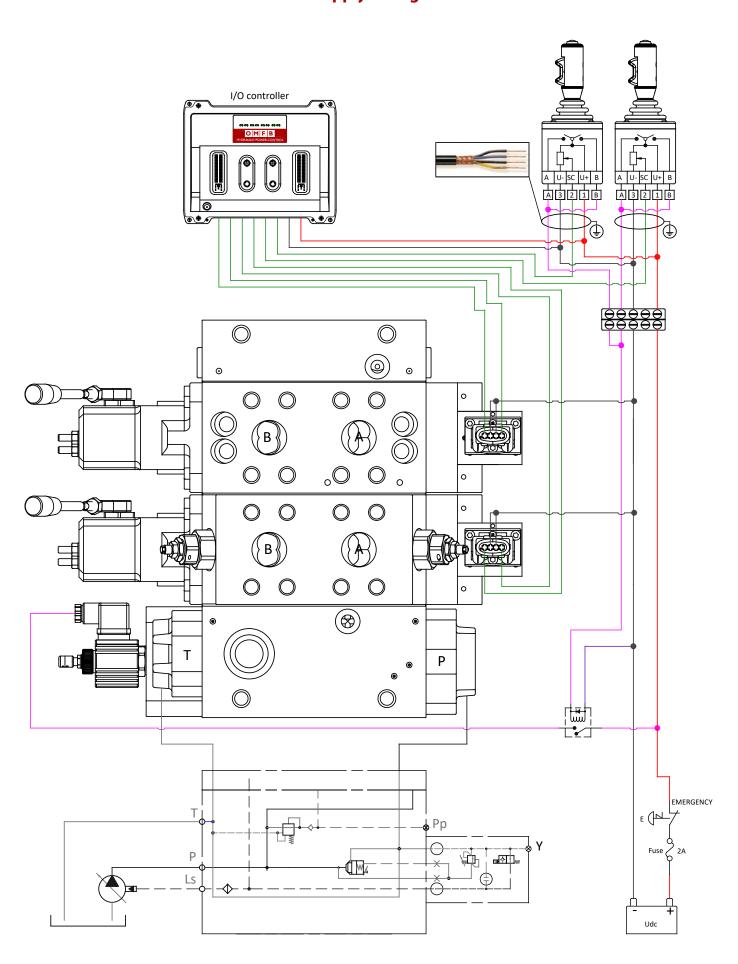


#### PEAP3 is defined by:

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

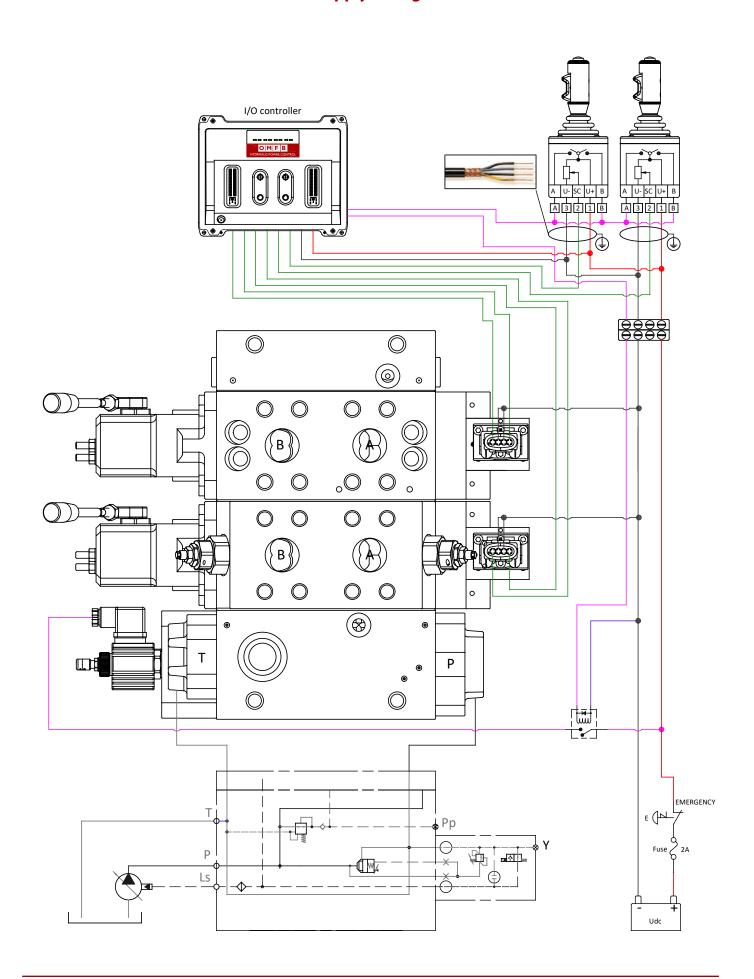
|                                     | PEAP3 Technical data                      |                  |                  |  |  |  |
|-------------------------------------|-------------------------------------------|------------------|------------------|--|--|--|
| Supply voltage                      | 12 Vdc                                    | 24 Vdc           |                  |  |  |  |
| Voltage range                       | 10-16 V                                   | 20-30 V          |                  |  |  |  |
| Max ripple                          |                                           | 5%               | 5%               |  |  |  |
| Current consuption at rated voltage | ge                                        | 1330 mA @ 12 Vdc | 630 mA @ 24 Vdc  |  |  |  |
| Power consumption                   |                                           | 23 W             | 21 W             |  |  |  |
| R @ 20°C                            |                                           | 6,3 Ω            | 27 Ω             |  |  |  |
| Start spool travel                  |                                           | 220 mA           | 140 mA           |  |  |  |
| End spool travel flow control       |                                           | 650 mA           | 350 mA           |  |  |  |
| Max spool flow in pre-floating pos  | sition                                    | 650 mA           | 350 mA           |  |  |  |
| Spool floating position             |                                           | 750 mA           | 400 mA           |  |  |  |
| Heat insulation                     |                                           | Class H (180°C)  |                  |  |  |  |
| Oil temperature (Recomme            | ended)                                    | -20 ÷ 60 °C      |                  |  |  |  |
| Oil temperature (Min)               |                                           | -30 °C           |                  |  |  |  |
| Oil temperature (Max)               |                                           | 80 °C            |                  |  |  |  |
| Ambient temperature                 |                                           | -30 ÷ 60 ℃       |                  |  |  |  |
| PWM frequency                       |                                           | 50 ÷ 200 Hz      |                  |  |  |  |
| Best frequency                      |                                           | 100 Hz           |                  |  |  |  |
| Duty cycle                          |                                           | 1009             | % ED             |  |  |  |
| Plug connector                      |                                           | Amp Junior Pov   | ver Timer 4 pins |  |  |  |
| Enclouser degree                    | (Electrical wiring excepted)              | IP6              | 9K               |  |  |  |
| Max current output signal for spoo  | ol direction moviment                     | 50               | mA               |  |  |  |
| Reaction time (constant voltage)    | From neutral position to max spool travel | 110 - 140 ms     |                  |  |  |  |
| neaction time (constant voltage)    | From max spool travel to neutral          | 70 - 90 ms       |                  |  |  |  |
| Reaction time (neutral switch)      | From neutral position to max spool travel | 130 - 170 ms     |                  |  |  |  |
| neaction time (neutral switch)      | From max spool travel to neutral          | 70 - 9           | 90 ms            |  |  |  |





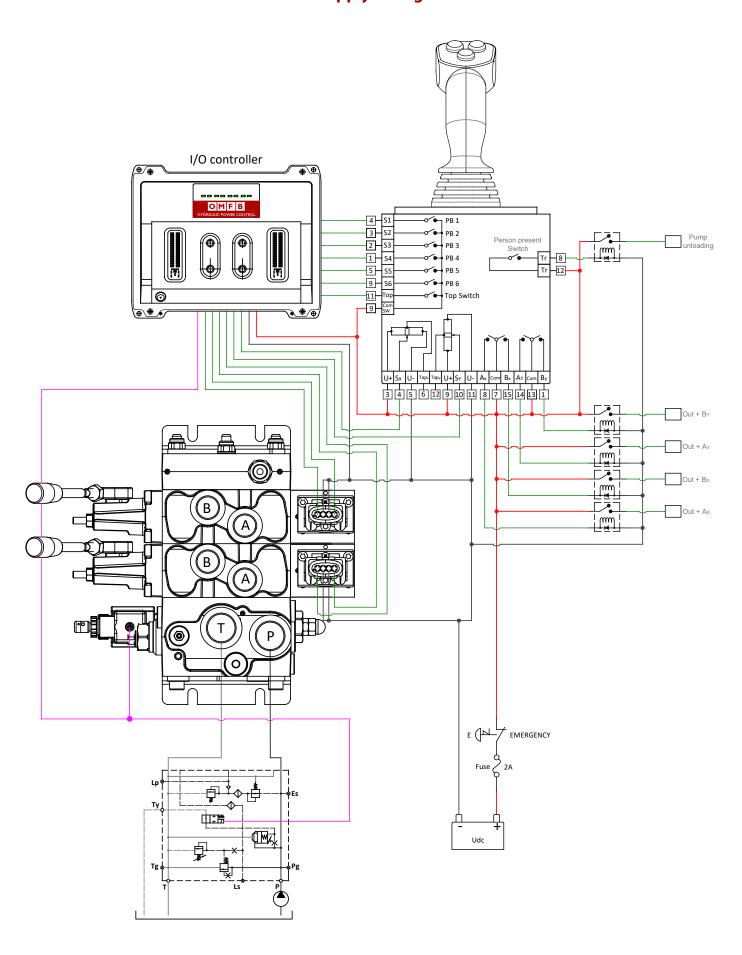



| Amp Junior Power Timer 4 pin connector<br>Enclousure degree IP 65<br>PIN-assignment |   |                 |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------|---|-----------------|--|--|--|--|--|--|--|
|                                                                                     | 1 | <b>A</b> port + |  |  |  |  |  |  |  |
|                                                                                     | 2 | <b>A</b> port - |  |  |  |  |  |  |  |
| 3<br>4<br>0<br>0                                                                    | 3 | <b>B</b> port - |  |  |  |  |  |  |  |
|                                                                                     | 4 | <b>B</b> port + |  |  |  |  |  |  |  |


|                        | Code numbers   |                |                |                |  |  |  |  |  |  |  |
|------------------------|----------------|----------------|----------------|----------------|--|--|--|--|--|--|--|
| Connector version      | 12             | 2 V            | 24 V           |                |  |  |  |  |  |  |  |
|                        | Cast-iron body | Aluminium body | Cast-iron body | Aluminium body |  |  |  |  |  |  |  |
| AMP Junior timer 4 Pin | PEAP0110002    | PEAP1110002    | PEAP0210002    | PEAP1210002    |  |  |  |  |  |  |  |



PDV315 - PEAP3 Electro-hydraulic proportional actuation Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control

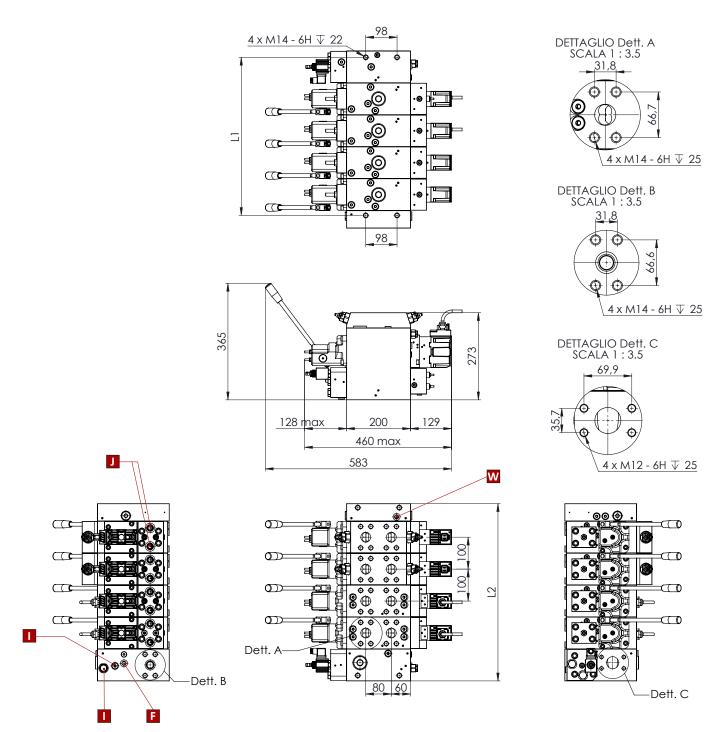









PDV315 - PEAP3 Electro-hydraulic proportional actuation Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control





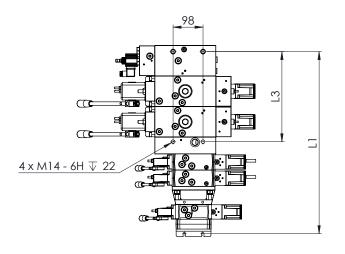


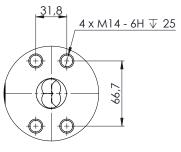

## **PDV315** Proportional valve

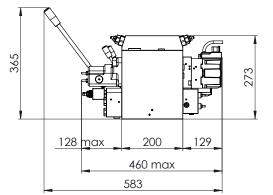
### Overall dimensions drawing with standard inlet section **Right assembly version**



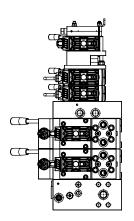
| PDW |    | 1    | 2    | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|-----|----|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.1 | mm | 180  | 228  | 276   | 324   | 372   | 420   | 468   | 516   | 564   | 612   | 660   | 708   |
| L1  | in | 7,09 | 8,98 | 10,87 | 12,76 | 14,65 | 16,54 | 18,43 | 20,31 | 22,20 | 24,09 | 25,98 | 27,87 |
|     | mm | 200  | 248  | 296   | 344   | 392   | 440   | 488   | 536   | 584   | 632   | 680   | 728   |
| L2  | in | 7,87 | 9,76 | 11,65 | 13,54 | 15,43 | 17,32 | 19,21 | 21,10 | 22,99 | 24,88 | 26,77 | 28,66 |

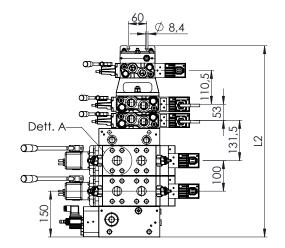

# PDV315 Proportional valve Overall dimensions drawing with standard inlet section Right assembly version

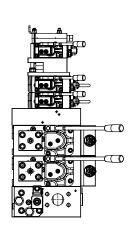

A = Pump side port - 3/4" BSPP - 17 mm deep [1 1/16 in 12 UN-2B - 0,67 in deep] **B** = T port - 3/4" BSPP - 17 mm deep [1 1/6 in 12 UN - 2B - 0,67 in deep] = Main pressure relief valve **D** = Main pressure reducing valve = Pump pressure gauge connection - 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep] **F** = LS connection 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep] G = External pilot pressure supply connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep] H = External feeding main pressure reducing valve 1/4" BSPP - 12 mm deep [1/16 in-20 UNF-2B - 0,47 in deep] T = Tank pressure gauge connection 1/4" BSPP - 12 mm deep [1/16 in-20 UNF-2B - 0,47 in deep] **J** = Electrical LS/pump unloading function K = Pump unloading drain port, 1/4" BSPP - 12 mm deep [7/6 in-20 UNF - 2B - 0,47 in deep] = Pump unloading mechanical override M = A-B port mechanical flow adjustment N = LSAremote pilot pressure connection 1/4" BSPP - 12 mm deep [1/16 in-20 UNF - 2B - 0,47 in deep] P = IS $\mathbf{Q} = \text{Port A}$ 1/2" BSPP - 17 mm deep [% in-14 UNF-2B - 0,67 in deep] S = LSBpilot pressure relief valve U = Shock/suction valve B port V = Shock/suction valve A port


W = External drain connection electric actuations - 1/4" BSPP - 12 mm deep [1/16 in-20 UNF-2B - 0,47 in deep]




# PDV315 Proportional valve Overall dimensions drawing with double inlet and MID end section



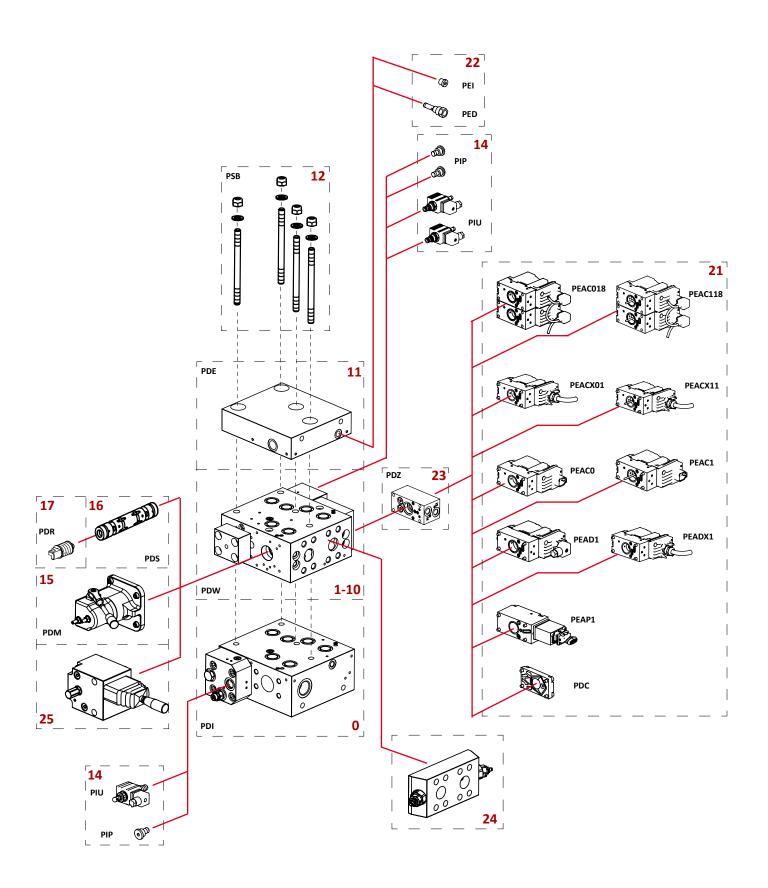












| PDW |    | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|-----|----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1.1 | mm | 331   | 379   | 427   | 475   | 523   | 571   | 619   | 667   | 715   | 763   | 811   |
| L1  | in | 13,03 | 14,92 | 16,81 | 18,70 | 20,59 | 22,48 | 24,37 | 26,26 | 28,15 | 30,04 | 31,93 |
|     | mm | 351   | 399   | 447   | 495   | 543   | 591   | 639   | 687   | 735   | 783   | 831   |
| L2  | in | 13,82 | 15,71 | 17,60 | 19,49 | 21,38 | 23,27 | 25,16 | 27,05 | 28,94 | 30,83 | 32,72 |

# PDV315 Proportional valve Overall dimensions drawing with double inlet and MID end section

A = Pump side port - 3/4" BSPP - 17 mm deep [1 1/16 in 12 UN-2B - 0,67 in deep] **B** = T port - 3/4" BSPP - 17 mm deep [1 1/6 in 12 UN - 2B - 0,67 in deep] = Main pressure relief valve **D** = Main pressure reducing valve E = Pump pressure gauge connection - 1/4" BSPP - 12 mm deep [1/16 in-20 UNF-2B - 0,47 in deep] **F** = LS connection 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep] G = External pilot pressure supply connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep] H = External feeding main pressure reducing valve 1/4" BSPP - 12 mm deep [1/16 in-20 UNF-2B - 0,47 in deep] T = Tank pressure gauge connection 1/4" BSPP - 12 mm deep [1/16 in-20 UNF-2B - 0,47 in deep] **J** = Electrical LS/pump unloading function K = Pump unloading drain port, 1/4" BSPP - 12 mm deep [7/6 in-20 UNF - 2B - 0,47 in deep] = Pump unloading mechanical override M = A-B port mechanical flow adjustment N = LSAremote pilot pressure connection 1/4" BSPP - 12 mm deep [1/16 in-20 UNF - 2B - 0,47 in deep] P = IS $\mathbf{Q} = \text{Port A}$ 1/2" BSPP - 17 mm deep [% in-14 UNF-2B - 0,67 in deep] S = LSBpilot pressure relief valve U = Shock/suction valve B port V = Shock/suction valve A port

W = External drain connection electric actuations - 1/4" BSPP - 12 mm deep [1/16 in-20 UNF-2B - 0,47 in deep]







## **PDV315** Proportional valve, Product selection chart

| Reference<br>field |                                               | Description                                                                             |         | Code numbers see pag |
|--------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------|---------|----------------------|
|                    | Inlet sections                                | Open centre                                                                             | PDI     |                      |
| 0                  | iniet sections                                | Closed centre                                                                           | PDI     |                      |
| 1-10               | Working sections                              | with pressure compensator                                                               | PDW     |                      |
| 1-10               | Working sections                              | without pressure compensator                                                            | 1000    |                      |
| 11                 |                                               | End sections                                                                            | PDE     |                      |
| 12                 |                                               | Stay bolt set                                                                           | PSB     |                      |
| 14                 | :                                             | Solenoid Ls unloading                                                                   | PIU     |                      |
|                    | Plu                                           | g for LS unloading cavity                                                               | PIP     |                      |
| 15                 |                                               | Mechanical actuation                                                                    | PDM     |                      |
| 16                 |                                               | Spool                                                                                   | PDS     |                      |
| 17                 |                                               | Spool centered set                                                                      | PDR     |                      |
|                    |                                               | Open loop spool control current signal for<br>PWM and ON-OFF control                    | PEAD1   |                      |
|                    |                                               | Open loop spool control high resolution                                                 | PEAC0   |                      |
|                    |                                               | Closed loop spool control high performance resolution                                   | PEAC1   |                      |
|                    |                                               | Open loop spool<br>control high resolution CAN-Bus                                      | PEAC018 |                      |
|                    | Proportional electro-<br>hydraulic actuations | Closed loop spool control high performance resolution CAN-Bus                           | PEAC118 |                      |
|                    |                                               | Open loop spool control high resolution ATEX                                            | PEACX01 |                      |
| 21                 |                                               | Closed loop spool control high performance resolution ATEX version                      | PEACX11 |                      |
|                    |                                               | Open loop spool control current signal for PWM and ON-OFF control ATEX version          | PEADX1  |                      |
|                    |                                               | Open loop spool control current input signal for PWM and ON-OFF control - AMP JPT 4 pin | PEAP1   |                      |
|                    |                                               | Hydraulic control                                                                       | PDH     |                      |
|                    | Rear cover for                                | Detent                                                                                  | PDD     |                      |
|                    | near cover for                                | Friction detent                                                                         | PDF     |                      |
|                    |                                               | Mechanical actuation                                                                    | PDC     |                      |
| 22                 | End sections                                  | External drain line cartridge                                                           | PED     |                      |
|                    | LIIU SECTIONS                                 | Internal plug                                                                           | PEI     |                      |
| 23                 | Du                                            | al function control body                                                                | PDZ     |                      |
| 24                 |                                               | Antishock body                                                                          |         |                      |



| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | to garage and    |    |                |          |                 |                      |               |               |               | Customer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |       |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------|----|----------------|----------|-----------------|----------------------|---------------|---------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|--|
| Valve type:   Fever winder:   Susted by:   Company   C | OMFB |                  |    |                |          | Date:/          |                      |               | Customer ref: |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |    |                |          |                 |                      | SSI           | ssued by:     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| Type of thire sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |    |                |          |                 |                      |               |               |               | MFB sales ref:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |       |  |
| Notes   Standard   Willing   Willi |      | Valve type:      |    |                |          |                 |                      | 8             |               |               | Rated voltage [V]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |  |
| Notes   Note |      | Type of threads: |    |                | VII      | Wor             | rking sections Down: | Pight vorsion |               |               | Certifications:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Noi | ne    |  |
| Notes    B   Port   23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |    |                |          | 2 <sup>nd</sup> | numn tyne:           | Right version |               |               | Pump flow [I/min]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |       |  |
| B Port 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                  | T  |                |          | 1- 1            | запр турс.           |               |               |               | r amp non [ŋ].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | Notes |  |
| B Port   28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | Hotes            | Ť  |                | 0        | bar             |                      |               |               | 13            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| Actuation side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0    |                  |    | <b>B</b> Port  | _        |                 |                      |               | _             | _             | <b>A</b> Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |       |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  | ŀ  | Actuation side |          |                 |                      |               |               |               | Handle side                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |       |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  | F  | 71010011011010 |          |                 |                      |               |               |               | Transaction of the control of the co |     |       |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 2                |    |                |          | h               |                      |               | h             | 16            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45  |       |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  | _  |                |          | par             |                      |               |               | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    | 1                | ./ |                |          |                 |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | _                | _  |                |          |                 |                      |               |               | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  | _  |                | -        |                 |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  | _  |                |          | bar             |                      | I             |               | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2    | 1                | .7 |                | 20       |                 |                      |               | 2             | 20            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ш   |       |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  | _  |                | 19       |                 |                      |               | 1             | 19            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Щ   |       |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |    |                | 18       |                 |                      |               | 2             | 23            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 2:               | 1  |                | 3        | bar             |                      | 1             | bar 1         | 16            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3    | 1                | .7 |                | 20       |                 |                      |               | 2             | 20            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  |    |                | 19       |                 |                      |               | 1             | 19            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 4   17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |    |                | 18       |                 |                      |               | 2             | 23            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 4   17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | 2                | 1  |                | 4        | bar             |                      |               | bar 1         | 16            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4    |                  | _  |                |          |                 |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4    | _                |    |                |          |                 |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| The color of the |      | _                |    |                | -        |                 |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 2                | 1  |                |          | har             |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |    |                |          | Dai             |                      | -             | _             | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5    | Ė                | -/ |                |          |                 |                      |               | _             | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 6     21     6     bar     bar     16     15       17     20     19     19       21     7     bar     23     15       17     20     20     15       17     20     20     19       21     18     19     19       21     18     19     19       17     20     20     19       17     20     20     19       18     19     19     19       17     20     23     10       17     20     20     19       10     19     19     19       21     19     19     19       10     19     19     19       21     10     10     10       21     10     10     10       22     10     10     10       23     10     10     10       24     10     10     10       25     10     10     10       26     10     10     10       27     10     10     10       28     10     10     10       29     10     10     10 <tr< th=""><th></th><th>_</th><th>_</th><th></th><th>_</th><th></th><th></th><th></th><th>_</th><th>_</th><th></th><th></th><th></th></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | _                | _  |                | _        |                 |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 6     17     20     20     19       19     19     19     19       18     23     15       17     20     20     19       19     19     19     19       10     18     23     10       17     20     20     19       18     23     10       19     19     19       11     19     19       10     19     19     19       10     19     19     19       11     10     19     19       11     19     19     19       10     19     19     19       11     19     19     19       10     19     19     19       11     19     19     19       11     19     19     19       11     19     19     19       11     19     19     19       11     19     19     19       11     19     19     19       11     19     19     19       11     19     19     19       11     19     19     19       11     19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 2                | 1  |                | -        | hou             |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45  |       |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  | _  |                |          | Dai             |                      |               |               | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6    | <u> </u>         | -/ |                | $\vdash$ |                 |                      |               | _             | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | _                | +  |                |          |                 |                      |               | _             | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 17     20     20     19       19     19     19     19       21     8     bar     bar 16     15       17     20     19     19     19       18     19     19     19       17     20     19     19     19       17     20     20     19       18     23     10       18     23     10       10     18     23     10       21     10     bar     bar 16     15       17     20     19     19     19       10     19     19     19     19       10     19     19     19     19       10     19     19     19     19       10     19     19     19     19       10     19     19     19     19       10     19     19     19     19       10     19     19     19     19       10     10     10     10     10       10     10     10     10     10       10     10     10     10     10     10       10     10     10     10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                  |    |                |          |                 |                      |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н   |       |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | _                | _  |                |          | bar             |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7    | 1                | ./ |                | -        |                 |                      |               |               | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H   |       |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | _                | +  |                |          |                 |                      |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н   |       |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  |    |                | -        |                 |                      |               | _             | $\overline{}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 9 21 9 bar bar 16 15 17 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |                  |    |                | _        | bar             |                      |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
| 9 21 9 bar bar 16 15 17 20 19 19 19 19 19 19 19 19 19 19 19 19 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8    | 1                | ./ |                | -        |                 |                      |               |               | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H   |       |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  | -  |                | -        |                 |                      |               | _             | -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н   |       |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |                  |    |                | _        |                 |                      |               | _             | $\overline{}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H   |       |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |    |                |          | bar             |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
| 19 19 23 23 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9    | 1                | .7 |                | -        |                 |                      |               |               | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 10 21 10 bar bar 16 15 17 20 20 20 20 20 20 20 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                  | 4  |                |          |                 |                      |               |               | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  | 4  |                | -        |                 |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
| 19 19 19 23 11 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                  |    |                |          | bar             |                      | I             | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15  |       |  |
| 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10   | 1                | .7 |                |          |                 |                      |               | 2             | 20            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Щ   |       |  |
| 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                  |    |                | -        |                 |                      |               | _             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |    |                | 18       |                 |                      |               | 2             | 23            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  | -  |                |          |                 |                      |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _   |       |  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |                  |    |                | 11       |                 |                      |               | 1             | 12            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11   |                  |    |                | 22       |                 |                      |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |    |                |          |                 |                      |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                  |    |                |          |                 |                      |               |               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |       |  |

PDV Composition form rev. 01 • 06/07/2020