

Proportional Directional Valves series: PDV74 - PDV114 - PDV315 Electronics & Accessories

Proportional Directional Valves series: PDV74 - PDV114 - PDV315 Contents

General	4
General description	
PDI open centre inlet section function	9
PDI closed centre inlet section function	13
PDI inlet sections code numbers	18
PIU soleinoid LS unloading valves	
PDW working sections code numbers	
PDE end sections code numbers	
PDS flow control spool	
PDR spool centered set	
PDS pressure control spool	
Modules and code numbers	
Shock and suction valves	
PDL Electrical LSA/B unloading	
PDLD Proportional Electrical LSA/B unloading	
PEAC111 Proportional closed loop spool control input signal 0,5 Udc	
PEAC112 Proportional closed loop spool control input signal control 0 ÷ 10 V	
PEAC116 Proportional closed loop spool control input signal control 4 ÷ 20 mA	
PEAC011 Proportional open loop spool control input signal 0,5 Udc	
PEAC012 Proportional open loop spool control input signal 0 ÷ 10 V	
PEAC016 Proportional open loop spool control input signal 4 ÷ 20 mA	
PEAD1 Proportional open loop spool control input signal PWM and ON-OFF	
PEAP1 Proportional open loop spool control input signal PWM and ON-OFF	
Overall dimension drawing	
Product selection chart	
Composition form	138 .
DDV/114 Caviac	1 / 1
PDV114 Series	
PDV315 Series	297
661347.68977	·····

CAN - Bus components

Electronic joysticks

PDV ATEX version

Hydraulic remote controls

PDV74 Proportional Directional Valve *General description*

General

The **PDV** technology platform, is the latest step in proportional directional valves configuration.

It takes mobile machine control to next level of performance, reliability, and feature stringent technical demands, exacting quality standard, and safety regulations.

Based on load sensing technology, are new breakthrough products with up-grated hydraulic functions that fulfil the ever increasing market demands for improved machines productivity, safety requirements, energy

efficient and environmental operations. They provides also a wide choice of control options, and are meant to be used in hazardous area also, according to **Atex 2014/34/UE Directive and**

IECEx protocol.

Safety Conformity assessment

FMEA and **FMEDA**, (failure modes effects and diagnostic analysis), are systematic analysis technique applied in early phases of a given system development, in order to detect weak points early.

When it comes to more complex products and assemblies involving a combination of both electrical and hydraulic parts, the need to ensure that adeguate surveillance over the design and manufacturing of key parts is paramount, to be compliance with the on-going series Standards **IEC 61508**.

Evaluation of the achieved performance level PL and relationship with SIL

Parts of machinery control systems that are assigned to provide safety functions are called safety-related parts of control systems and these can consist in hydraulic valves with hardware and software, and can either be separate from the machine control system or an integral part of it.

PDV units, can be requested to be applied as " logic units to ensure safety functions in accordance with Machine Directive EN 13849".

For the purpose of this part of Machine Directive, the ability of safety- related parts to perform a safety function is expressed through the determination of the performance level.

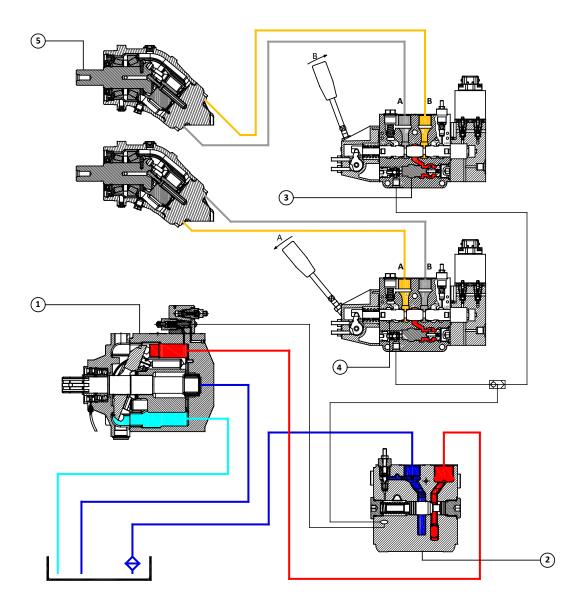
To make the assessment of the quantifiable aspects of the PL easier, this part of EN 13849 provides a simplified method based on the definition of five designated architectures that fulfil specific design criteria and behaviour under a fault condition.


Therefore, the machine builder or system integrator have full accountability for making the final products selection and assuring that all performance, safety and warning requirements of the application are being met.

PDV74 Proportional Directional Valve Technical information

PDV74 is a hydraulic proportional directional valve, designed to offers a wide range controls options and flexibility.

The **PDV74** modular system enables bankable groups to perform many individual tasks, to meeting and exceeding the changing control needs of the off-highway machines of today, and well into the future to maximize the efficiency, controllability and reliability of vehicles.



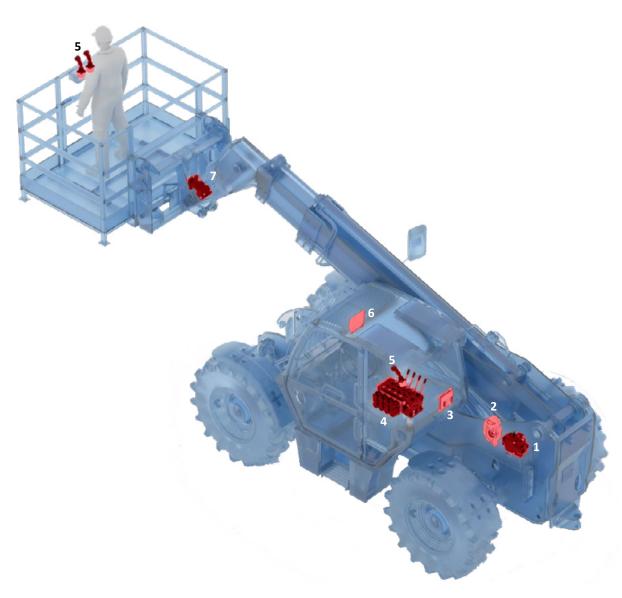
PDV74 main features:

- Load sensing up-stream pressure compensation
- High flow/low pressure drop capability in a compact size
- Integrated pump unloading system
- Integrated cut-off pump system
- Open/closed centre shifting system
- Precise metering capabilities
- LSA-LSB electrical unloading
- LSA-LSB electrical working pressure remote control
- Constant flow regardless of pressure
- Working sections symmetrical flow
- Optional priority inlet for steering or different priority functions
- Optional dual hydraulic pilot and electrohydraulic control
- ATEX and IECEx configuration
- CAN-Bus comunication
- EMC immunity ensures high safety with regard to electro-magnetic compatibility

PDV74 Proportional Valve - Technical Information - Function *Hydraulic circuit general description*

High pressure port of **PPV** piston pump ① supply the closed centre inlet section of **PDV74** proportional valve ② which in turn feeds the down-stream working sections.

The **PDS** spool neutral position ④ unload the LS pump signal to tank, so that the swashplate angle is towards the minimum displacement and pressure in stand-by setting.


The spool position determines the flow demands (speed rotation) of the two HPM motors 5.

The PDS main spool compares the pressure drop before and after the spool notches (differential pressure Δp), and therefore, the pump flow remain constant.

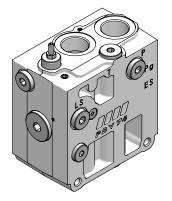
If the differential pressure increase, the pump swashplate is swivelled back towards the minimum displacement, and if the differential pressure decrease, the swashplate angle increase towards the max flow displacement until balance is restored within the valve.

Actuators load determines the working pressure, and the built-in pressure compensator ③ enable simultaneously function regardless of different working pressure.

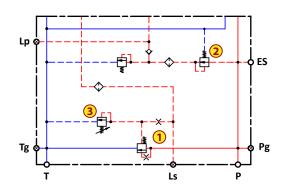
- 1. PPV90 load sensing piston pump
- 2. Pump slitter gear box
- 3. I/O controller PHSI7101008
- 4. PDV74/6 closed centre inlet
- 5. Electronic double axis joystick PEJD
- **6**. Graphic display PDHI703000
- 7. PPM40 piston motor

PDV74 Proportional Valve Technical data

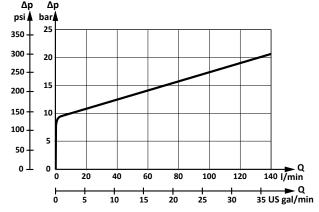
The hydraulic features listed in this chart, are typical measured data obtained by using mineral based hydraulic oil according to DIN 51524 with a viscosity of 21 mm²/sec [102 SUS] and a temperature of 50 °C [122 °F]

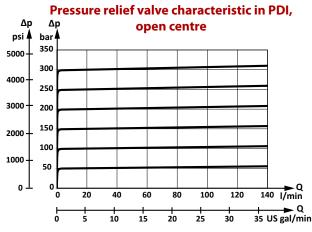

PDI inlet section, P port		160 l/min (max)	42 US gal/min
PDIM - Mid inlet section, P port		250 l/min	66 US gal/min
A, B port with pressure	compensator	130 l/min	34 US gal/min
A, B port without pressu	ure compensator	140 l/min	37 US gal/min
	Pressure relief valve setting	400 bar	5800 psi
P port	Working pressure	370 bar	5370 psi
A, B port		370 bar	5370 psi
Ty port, directly to tank			
••••••	Static	25 bar	363 psi
T port	Dynamic	37 bar	537 psi
/lax. pilot pressure oil su	pply	18 ÷ 22 bar	260 ÷ 320 psi
Reco	ommended	30 ÷ 65 °C	86 °F ÷ 149 °F
Min		-30 °C	-22 °F
Max		90 °C	194 °F
Ambient temperature			-22 ÷ 140 °F
Opera	ating range	12 ÷ 75 mm ² /sec	65 ÷ 347 SUS
`	Min	4 mm ² /sec	39 SUS
	Max	460 mm ² /sec	2128 SUS
Standard		7 mm	0,28 in
Flow control proportion	nal range	5,5 mm	0,22 in
Pressure control propotional range		6 mm	0,24 in
Flow control		1,5 mm	0,06 in
Pressure control		1 mm	0,04 in
Max internal leakage A/B port		21 cm³/min	1,28 in ³ /min
] and 21 mm²/sec	A/B T with shock valves	25 cm³/min	1,53 in³/min
	PDIM - Mid inlet section A , B port with pressure A , B port without press P port A , B port Ty port, directly to tank T port Max. pilot pressure oil su Recc Ambient temperature Oper Standard Flow control proportion Pressure control propot Pressure control propot	PDIM - Mid inlet section, P port A, B port with pressure compensator A, B port without pressure compensator P port Pressure relief valve setting P port Working pressure A, B port Vorking pressure A, B port Static T port Static Dynamic Dynamic Aax. pilot pressure oil supply Recommended Min Max Ambient temperature Operating range Min Max Standard Flow control proportional range Flow control propotional range Flow control Pressure control A/B T without shock valves	PDIM - Mid inlet section, P port250 l/minA, B port with pressure compensator130 l/minA, B port without pressure compensator140 l/minP portPressure relief valve setting400 barP portWorking pressure370 barA, B port370 bar370 barA, B port, directly to tank5 tatic25 barT port, directly to tankDynamic37 barAax. pilot pressure oil supply18 ÷ 22 barRecommended30 ÷ 65 °CMax90 °CAmbient temperature-30 ÷ 60 °COperating range12 ÷ 75 mm²/secMax460 mm²/secStandard7 mmFlow control proportional range5,5 mmPressure control proportional range6 mmFlow control1,5 mmPressure control1 mm

PDH module - hydraulic control		
Dilot prossure	Spool start movement	4 bar / 58 psi
Pilot pressure	Spool end stroke	15 bar / 218 psi
Max. pilot pressure		30 bar / 436 psi


PDV74 internal filters, mesh 100 μm

Mineral oil hydraulic fluid: according to DIN 51524 and 51525 or ISO 6743/4 PDV74 can also be used with phosphate esters (HFDR), water-glycol (HFC) or water oil (HFB) mixes, subject to our Technical Dept. approval



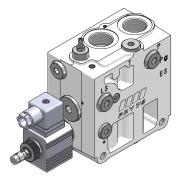


Hydraulic diagram

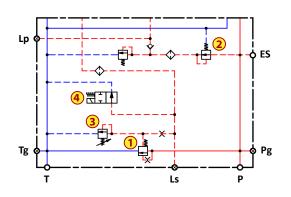
Neutral flow-pressure drop in PDI, open centre

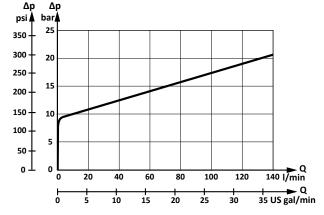
Designed for use with fixed displacement pumps.

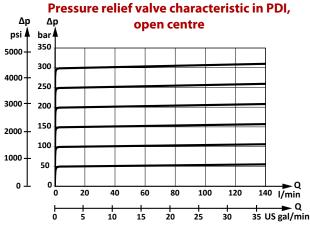
Inlet comes standard with pressure compensated 3-way flow regulator ①, that when pump is started and working sections spools are in neutral position, it's unloaded to tank, and the oil flow being supplied from the pump, passes through the 3-way flow regulator to tank with minimal off-load pressure drop (see diagram below).


When one or more of the spools are actuated, the highest working pressure signal is fed to the 3-way flow regulator, that maintains the Δp at a constant level, so that the flow rate is independent of the load, and proportional to the opened spool area. The built in pressure reducing valve (2), act as the pilot pressure supply for the electrical actuators, as well as, the hydraulic remote controls.

When the main PDS spools are actuated, the exceeding pump flow is being sent to tank at the highest load pressure value. If the working pressure reaches the setting of the upstream max pressure pilot relief valve (3), the 3-way flow regulator will be opened to tank, thus limiting the working pressure inside the complete PDV.


On this configuration, the level of safety degrees for the complete PDV valve is really low, therefore, operator's great supervision is strictly request.


PDV74 Proportional Valve - Technical Information, Function. **PDI** module - Open centre inlet section for fixed displacement pumps, and emergency LS unloading valve (**PIU**)



Hydraulic diagram

Neutral flow-pressure drop in PDI, open centre

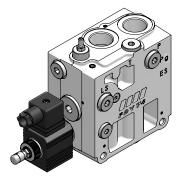
Designed for use with fixed displacement pumps.

Inlet comes standard with pressure compensated 3-way flow regulator ①, that when pump is started and working sections spools are in neutral position, it's unloaded to tank, and the oil flow being supplied from the pump, passes through the 3-way flow regulator to tank with minimal off-load pressure drop (see diagram below).

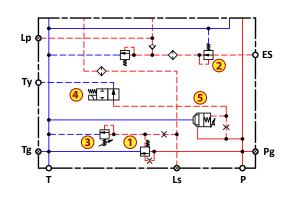
When one or more of the spools are actuated, the highest working pressure signal is fed to the 3-way flow regulator, that maintains the Δp at a constant level, so that the flow rate is independent of the load, and proportional to the opened spool area. The built in pressure reducing valve (2), act as the pilot pressure supply for the electrical actuators, as well as, the hydraulic remote controls.

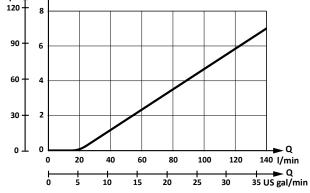
When the main PDS spools are actuated, the exceeding pump flow is being sent to tank at the highest load pressure value. If the working pressure reaches the setting of the upstream max pressure pilot relief valve (3), the 3-way flow regulator will be opened to tank, thus limiting the working pressure inside the complete PDV.

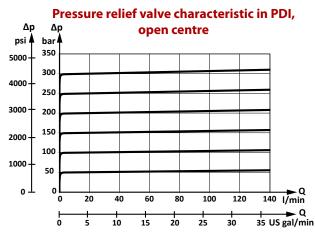
According to an electrical signal coming from the remote controls or I/O controller, the PDU solenoid unloading valve (4), enable the LS signal to be relieved to tank, and the effect of this configuration is an almost pressureless system, where the activated actuators will be automatically catted off.


The pressure in the system will be reduced to the sum of the tank port pressure, plus the neutral flow pressure drop through the 3-way flow regulator.

Care must be given, because all the actuators whose working pressure is lower than the pressure drop through the 3-way regulator, might be still operated.


Also with the use of PDU emergency solenoid unloading valve, the level of safety degrees for the complete PDV valve is quite low, therefore, operator's supervision is required.


PDV74 Proportional Valve - Technical Information - Function **PDI** module - Open centre inlet section for fixed displacement pumps, and **integrated pump unloading system**



Hydraulic diagram

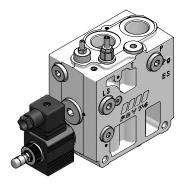
Neutral flow-pressure drop in PDI, open centre

Designed for use with fixed displacement pumps.

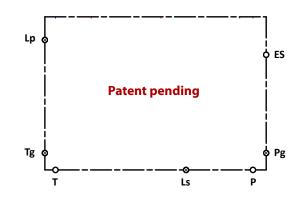
Inlet comes standard with pressure compensated 3-way flow regulator ①, that when pump is started and working sections spools are in neutral position, it's unloaded to tank, and the oil flow being supplied from the pump, passes through the 3-way flow regulator to tank with minimal off-load pressure drop (see diagram below).

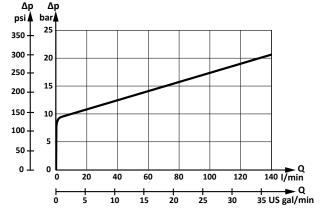
When one or more of the spools are actuated, the highest working pressure signal is fed to the 3-way flow regulator, that maintains the Δp at a constant level, so that the flow rate is independent of the load, and proportional to the opened spool area. The built in pressure reducing valve (2), act as the pilot pressure supply for the electrical actuators, as well as, the hydraulic remote controls.

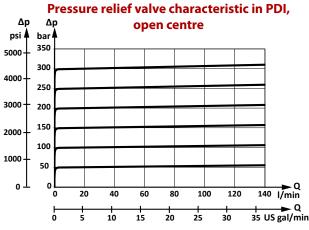
When the main PDS spools are actuated, the exceeding pump flow is being sent to tank at the highest load pressure value. If the working pressure reaches the setting of the upstream max pressure pilot relief valve (3), the 3-way flow regulator will be opened to tank, thus limiting the working pressure inside the complete PDV.


By means of an electrical signal coming from the remote controls or I/O controller, the PDU solenoid valve ④, operates the poppet type pilot operated valve ⑤, which in turn, allows the full flow coming from the pump to be relieved to tank, bypassing the 3-way flow regulator ①.

The effect of this condition is a complete and safely pressureless system, where all actuators will be automatically catted-off, and the pressure into the system will be reduced to the sum of the tank port pressure, plus the pressure drop through the poppet unloading valve (see characteristic curve below)


When the inlet section comes with this configuration and the pump unloading system is connected with the active fault monitoring spool actuators, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.


PDV74 Proportional Valve - Technical Information - Function **PDI** module - Open centre inlet section for fixed displacement pumps, with pilot shifting spool for closed centre variable displacement pumps



Hydraulic diagram

Neutral flow-pressure drop in PDI, open centre

Designed to be configured either as open centre (fixed displacement pumps) or closed centre version (variable displacement pumps)

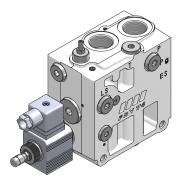
Inlet comes standard with pressure compensated 3-way flow regulator (1), that when pump is started and working sections spools are in neutral position, it's unloaded to tank, and the oil flow being supplied from the pump, passes through the 3-way flow regulator to tank with minimal off-load pressure drop (see diagram below).

When one or more of the spools are actuated, the highest working pressure signal is fed to the 3-way flow regulator, that maintains the Δp at a constant level, so that the flow rate is independent of the load, and proportional to the opened spool area. The built in pressure reducing valve (2), act as the pilot pressure supply for the electrical actuators, as well as, the hydraulic remote controls.

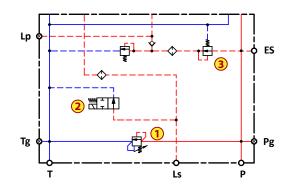
When the main PDS spools are actuated, the exceeding pump flow is being sent to tank at the highest load pressure value. If the working pressure reaches the setting of the upstream max pressure pilot relief valve (3), the 3-way flow regulator will be opened to tank, thus limiting the working pressure inside the complete PDV.

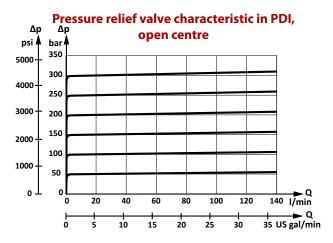
By acting clockwise on the pilot shifting spool ④, without changing any components, the inlet section circuit will be transformed into closed centre configuration.

In this configuration the load sensing pilot pressure is led to pump control via the LS connection. When a main spool is actuated, the pump regulator will adjust the displacement so that the set differential pressure (stand-by pressure) between P and LS signal is maintened.


The pressure relief valve 3 is to be set at 35 bar above maximum cut-off pressure set on the pump.

The LS control performs as a constant pressure control also, decreasing pump displacement when system pressure reaches the PC setting.


The pressure compensating function has the priority over the load sensing function.



PDV74 Proportional Valve - Technical Information - Function **PDI** module - Closed centre inlet section for variable LS displacement pumps, and emergency LS unloading valve (**PIU**)

Hydraulic diagram

Designed for use with LS variable displacement pumps.

Inlet comes standard without pressure compensated 3-way flow regulator.

When pump is started and PDV spools are in neutral position, the LS pump signal is unloaded to tank.

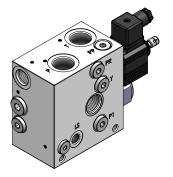
When one or more of the spools are actuated, the highest signal is sent to the pump regulator that control the pump swashplate angle.

The PDS main spool compares the pressure drop before and after the spool notches (differential pressure Δp), and therefore, the pump flow remain constant.

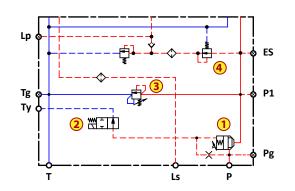
The position of the PDS spool determines the flow demand. If the differential pressure increase, the pump swashplate is swivelled back towards the minimum displacement, and if the differential pressure decrease, the swashplate angle increase towards the max flow displacement until balance is restored within the valve.

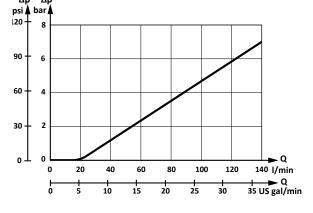
The inlet section can comes with an optional pressure relief valve 1 that should be set at pressure about 35 bar above maximum system pressure set on the pump regulator.

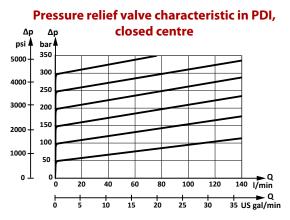
According to an electrical signal coming from the remote controls or I/O controller, the PIU solenoid unloading valve 2 enable the LS signal to be relieved to tank.


The effect of this configuration is an almost pressureless system, where the activated actuators will be automatically catted off, and the pressure in the system will be reduced to the sum of the tank port pressure, plus the differential pressure of the pump, therefore, care must be given, because all the actuators whose working pressure is lower than the remaining pressure might be still operated.

The built in pressure reducing valve ③, act as the pilot pressure supply for the electrical actuators, as well as, the hydraulic remote controls.


Also with the use of PIU emergency solenoid unloading valve, the level of safety degrees for the complete PDV valve is quite low, therefore, operator's great supervision is required.


PDV74 Proportional Valve - Technical Information - Function **PDI** module - *Closed centre inlet section for variable LS displacement pumps and pump cut-off system*



Hydraulic diagram

Pressure drop cut-off system in PDI, closed centre

Designed for use with LS variable displacement pumps.

This version of inlet comes standard with a double stage cut-off pump system (1), that when activated according to an electrical signal (2), all down-stream working section will be perfectly and safely sealed from pressure and flow, protecting the complete hydraulic machines control against the negative effect of the remaining stand by pressure.

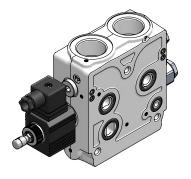
Inlet comes standard without pressure compensated 3-way flow regulator.

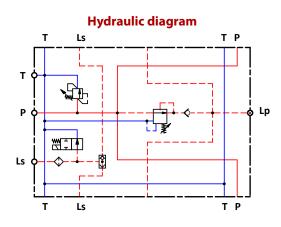
When pump is started and PDV spools are in neutral position, the LS pump signal is unloaded to tank.

When one or more of the spools are actuated, the highest signal is sent to the pump regulator that control the pump swashplate angle.

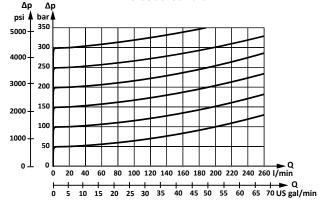
The PDS main spool compares the pressure drop before and after the spool notches (differential pressure Δp), and therefore, the pump flow remain constant.

The position of the PDS spool determines the flow demand. If the differential pressure increase, the pump swashplate is swivelled back towards the minimum displacement, and if the differential pressure decrease, the swashplate angle increase towards the max flow displacement until balance is restored within the valve.


The inlet section can comes with an optional pressure relief valve 3 that should be set at pressure about 35 bar above maximum system pressure set on the pump regulator.


The built in pressure reducing valve ④, act as the pilot pressure supply for the electrical actuators, as well as, the hydraulic remote controls.

When the inlet section comes with this configuration and the cut-off pump system is connected with the active fault monitoring spool actuators, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.



PDV74 Proportional Valve - Technical Information - Function **PDIM** module - MID inlet *closed centre section for variable LS displacement pumps, and integrated PIU LS unloading valve*

Pressure relief valve characteristic in PDI, closed centre

Designed for use with LS variable displacement pumps.

PDIM is a MID inlet section that allows the PDV74 to be supplied with a larger variable pump flow capacity with a lower pressure drop.

PDIM enable to PDW to be mounted on both sides of the pump side module, therefore, the PDW fitted on PMID left side, the A-B work port position are reversed.

Inlet comes standard without pressure compensated 3-way flow regulator.

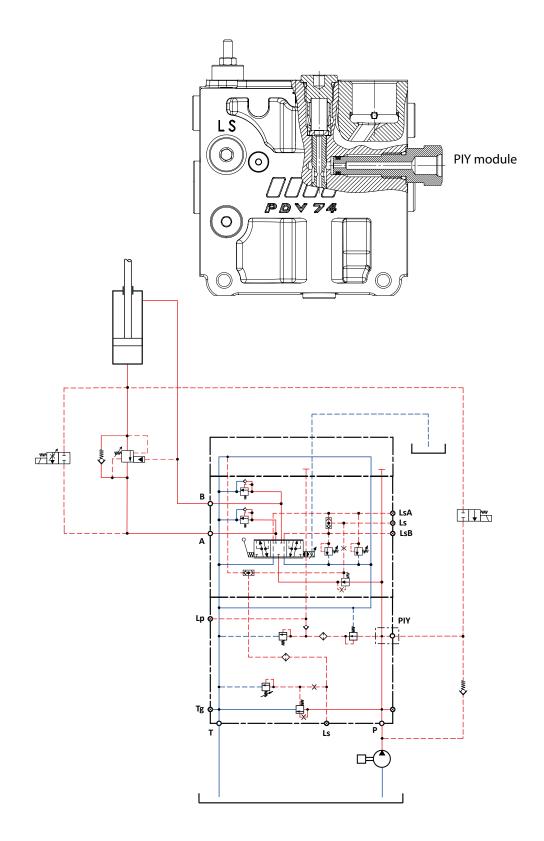
When pump is started and PDV spools are in neutral position, the LS pump signal is unloaded to tank.

When one or more of the spools are actuated, the highest signal is sent to the pump regulator that control the pump swashplate angle.

The PDS main spool compares the pressure drop before and after the spool notches (differential pressure Δp), and therefore, the pump flow remain constant.

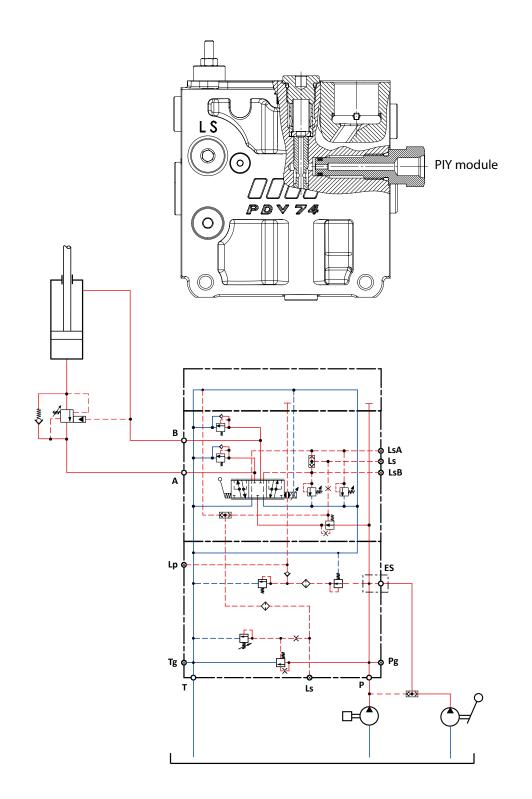
The position of the PDS spool determines the flow demand. If the differential pressure increase, the pump swashplate is swivelled back towards the minimum displacement, and if the differential pressure decrease, the swashplate angle increase towards the max flow displacement until balance is restored within the valve.

The inlet section may comes with an optional pressure relief valve that should be set at pressure about 35 bar above maximum system pressure set on the pump regulator.


According to an electrical signal coming from the remote controls or I/O controller, the PIU solenoid unloading valve enable the LS signal to be relieved to tank.

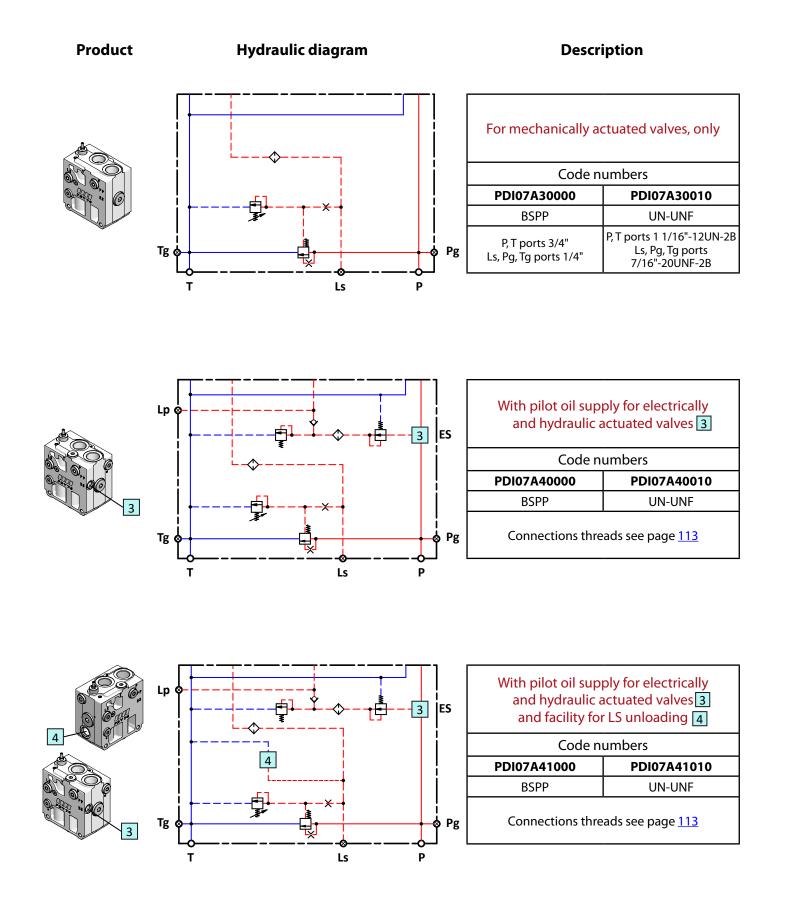
The effect of this configuration is an almost pressureless system, where the activated actuators will be automatically catted off, and the pressure in the system will be reduced to the sum of the tank port pressure, plus the differential pressure of the pump, therefore, care must be given, because all the actuators whose working pressure is lower than the remaining pressure might be still operated.

Also with the use of PIU emergency solenoid unloading valve, the level of safety degrees for the complete PDV valve is quite low, therefore, operator's great supervision is required.



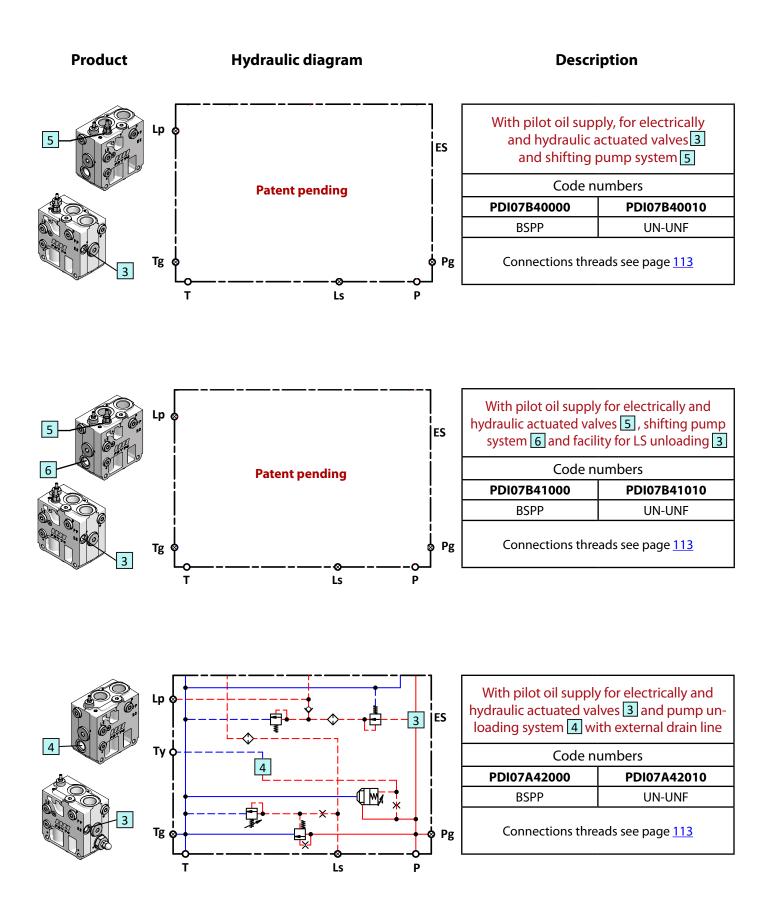
PDV74 Proportional Valve - Technical information Emergency lowering function

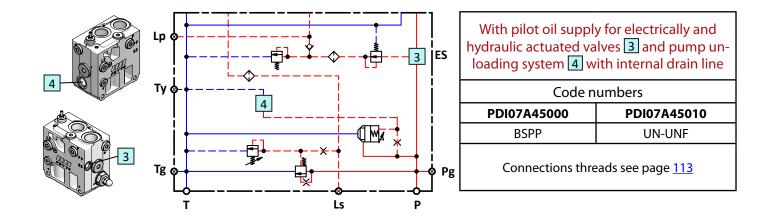
PDV74 Proportional Valve - Technical information Emergency lowering function

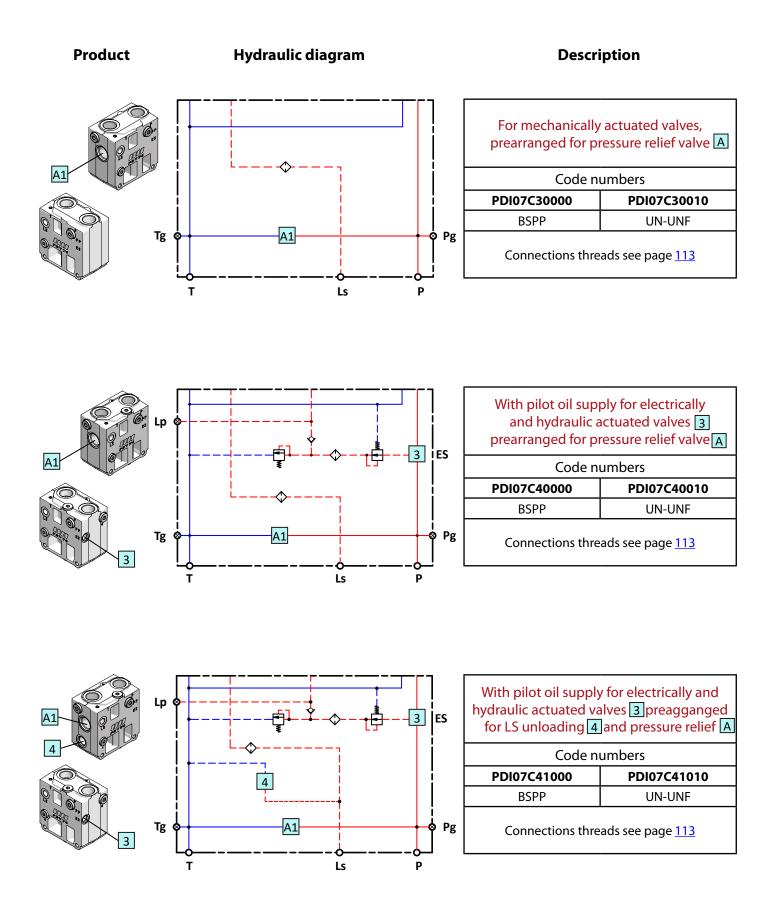

This inlet configuration (for open or closed centre) is suited to supply the PDV74 with a flow from an auxiliary manual operated emergency pump.

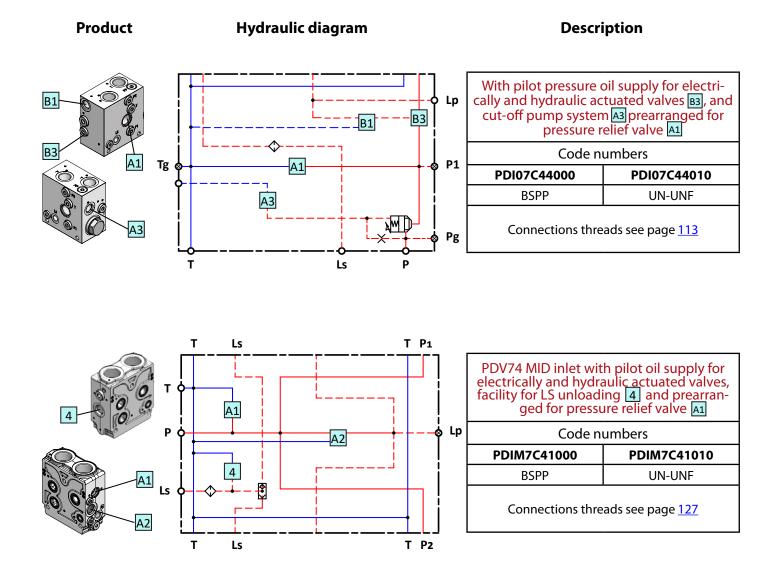
Normally the main pump supply the built in pressure reducing valve through the PIY, screw-in cartridge.

In case of main pump failure, the external shuttle valve ensure that the main pressure reducing valve is being supplied from the emergency hand pump, and the pilot oil supply available for electric actuators.

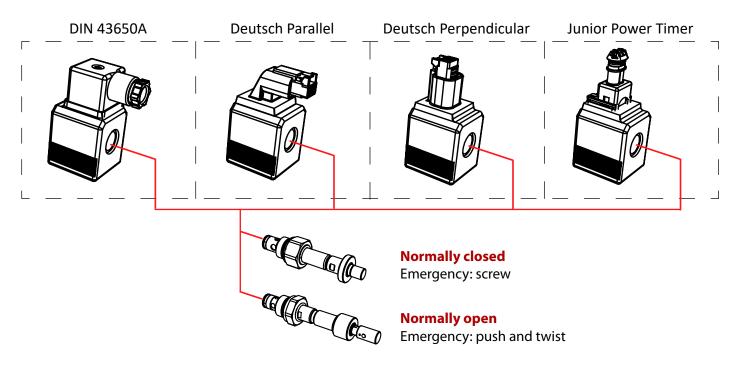



PDV74 Proportional Valve - Pump side inlet section **PDI** modules - *open centre version (fixed displacement pumps)*


PDV74 Proportional Valve - Pump side inlet section **PDI** modules - *open centre version (fixed displacement pumps)*



PDV74 Proportional Valve - Pump side inlet section PDI modules - *closed centre version (variable Ls displacemens pumps)*



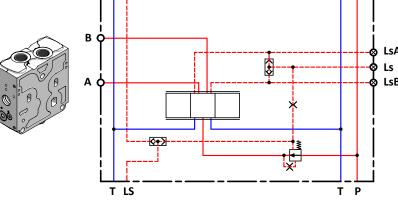
PDV74 Proportional Valve **PIU** solenoid LS unloading valves

Code numbers PIU solenoid LS unloading valve codes					
Cartridge valve type	Connector type	12 Vdc	24 Vdc		
Normally closed	DIN 43650A	PIU0C023200	PIU0C013200		
Emergency: screw 人 ²	Deutsch Parallel	PIU0C021200	PIU0C011200		
M V L L	Deutsch Perpendicular	PIU0C022200	PIU0C012200		
	Junior Power Timer	PIU0C024200	PIU0C014200		
Normally open Emergency: push and twist	DIN 43650A	PIU0A023100	PIU0A013100		
λ^2	Deutsch Parallel	PIU0A021100	PIU0A011100		
	Deutsch Perpendicular	PIU0A022100	PIU0A012100		
	Junior Power Timer	PIU0A024100	PIU0A014100		

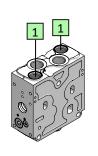
	Plug for LS unloading cavity			
Plug cavity	Hydraulic scheme	Code numbers		
	¢	PIP1000000		

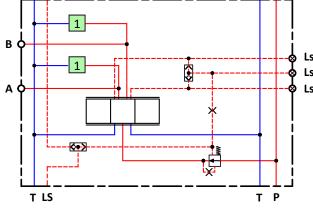
PDV74 Proportional Valve **PIU** solenoid LS unloading valves - Technical data

Max. operating pressure	3	50 bar	
Max. internal leakage	Max. internal leakage 350 bar, 46 mm²/sec 1 cm³/min		
max pressure drop	ρ	< 1,5	bar
Expected life - 350 bar, 0,5 Hz (1s on /1s off)	10.000.00	00 cycles
Response time for LS press	sure relief	< 28	0ms
	Recommended	30 ÷ (50 °C
Oil temperature	Min.	-30	°C
	Max.	90	°C
Ambient temperatu	ıre	-30 ÷	60 °C
Max. coil surface tempe	erature	160	°C
	Operating range	10 ÷ 90 cSt	
Oil viscosity	Min.	4 mm²/sec	
	Max.	460 mm²/sec	
	Connector DIN 43650	IP65	
Degree of enclosure		IPe	57
	Connector Deutsch DT04-2p	IP69K integrated to coil	
Rated voltage		12 Vdc	24 Vdc
Supply voltage		10,6 ÷ 14,6 Vdc	20,4 ÷ 28,6 Vdc
Working temperature		-30 ÷ 80 °C	
Maximum coil surface temperature		175 °C	
Heat insulation		Class H (180 °C)	
Resistance		7,5 Ω	29,9 Ω
Current consumption		1,6 A	0,8 A
Power consumption		19	W

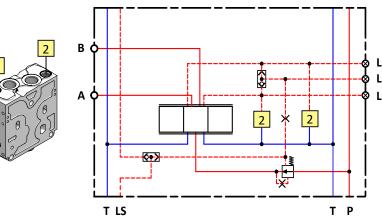


PDV74 Proportional Valve **PDW** modules - working sections **with pressure compensator**


Product


Hydraulic diagram

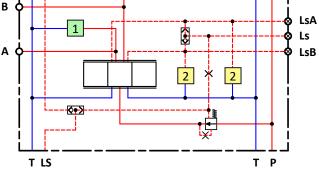
Description



	No facilities for shock-suction valves No facilities for LS A/B pilot relief valves		
A	Code numbers		
в	PDW71000010		
D	BSPP	UN-UNF	
	A/B ports 1/2" Ls-LsA-LsB remote pressure connections 1/4"	A/B ports 7/8"-14UNF-2B Ls-LsA-LsB remote pressure connections 7/16"-20UNF-2B	

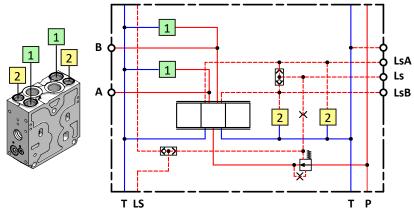
	ck-suction valves 1 /B pilot relief valves		
sA	Code numbers		
s sB	PDW71010000	PDW71010010	
50	BSPP	UN-UNF	
	A/B ports 1/2" Ls-LsA-LsB remote pressure connections 1/4"	A/B ports 7/8"-14UNF-2B Ls-LsA-LsB remote pressure connections 7/16"-20UNF-2B	

		ock-suction valves B pilot relief valves 2
sA	Code n	umbers
s sB	PDW71100000	PDW71100010
SD	BSPP	UN-UNF
	A/B ports 1/2" Ls-LsA-LsB remote pressure connections 1/4"	A/B ports 7/8"-14UNF-2B Ls-LsA-LsB remote pressure connections 7/16"-20UNF-2B


PDV74 Proportional Valve **PDW** modules - Working sections with pressure compensator

Product

Hydraulic diagram

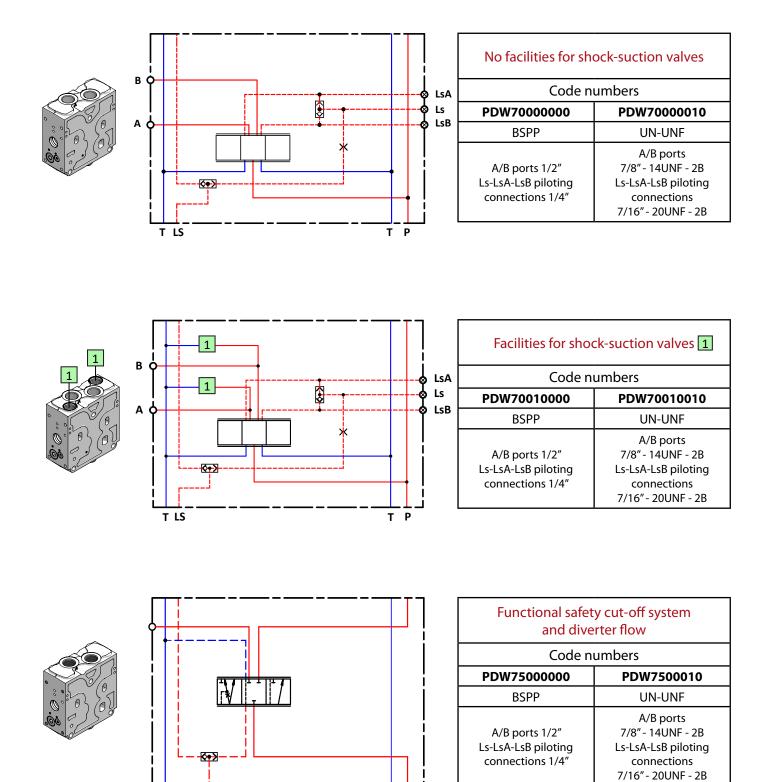

Description

1

Facilities for shock-suction valves 1 Facilities for LS A/B pilot relief valves 2		
Code n	umbers	
PDW71110000 PDW71110010		
BSPP	UN-UNF	
A/B ports 1/2" Ls-LsA-LsB remote pressure connections 1/4"	A/B ports 7/8"-14UNF-2B Ls-LsA-LsB remote pressure connections 7/16"-20UNF-2B	

Facilities for shock-suction valves 1 Facilities for LS A/B pilot relief valves and electric unloading LS A/B piloting 2		
Code numbers		
PDW71111000	PDW71111010	
BSPP	UN-UNF	
A/B ports 1/2" Ls-LsA-LsB remote pressure connections 1/4"	A/B ports 7/8"-14UNF-2B Ls-LsA-LsB remote pressure connections 7/16"-20UNF-2B	

т


LS

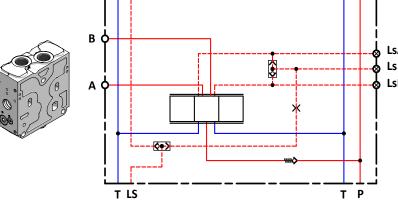
PDV74 Proportional Valve **PDW** modules - Working sections **without pressure compensator**

Product

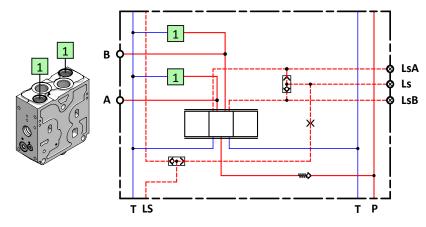
Hydraulic diagram

Description

ТР



PDV74 Proportional Valve **PDW** modules - working sections **without pressure compensator**

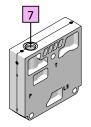

Product

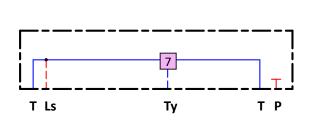
Hydraulic diagram

Description

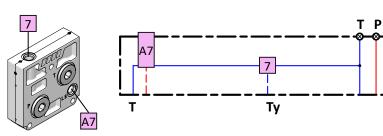
		ock-suction valves k valve on P channel	
sA	Code numbers		
s sB	PDW73000000	PDW73000010	
	BSPP	UN-UNF	
	A/B ports 1/2" Ls-LsA-LsB piloting connections 1/4"	A/B ports 7/8" - 14UNF - 2B Ls-LsA-LsB piloting connections 7/16" - 20UNF - 2B	

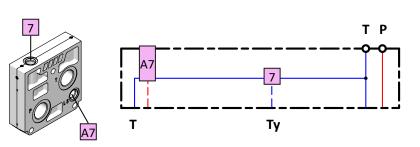
Facilities for shock-suction valve 1 With load drop check valve on P channel			
Code n	Code numbers		
PDW73010000	PDW73010010		
BSPP	UN-UNF		
A/B ports 1/2" Ls-LsA-LsB piloting connections 1/4"	A/B ports 7/8" - 14UNF - 2B Ls-LsA-LsB piloting connections 7/16" - 20UNF - 2B		




PDV74 Proportional Valve **PDE** modules -End sections

Product

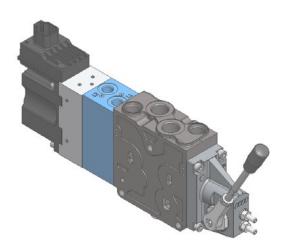

Hydraulic diagram



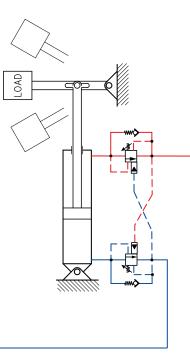
No ported, prearranged for external/internal drain 7		
Code n	umbers	
PDE07010000	PDE07010010	
BSPP	UN-UNF	
Ty ports 1/4"	Ty ports 7/16"-20UNF-2B	

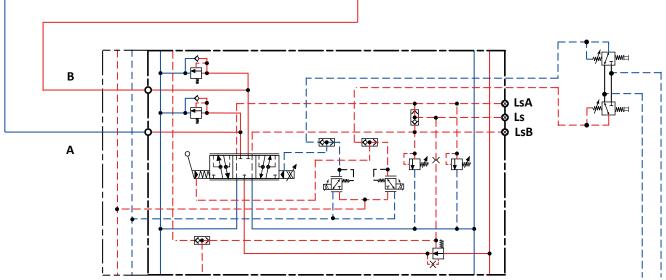
Ls port A prearranged for external/internal drain 7		
Code n	umbers	
PDE07210000	PDE07210010	
BSPP	UN-UNF	
P, T ports 3/4" P, T ports 1 1/16"-12UN-2 Ls, Ty ports 1/4" P, T ports 7/16"-20UN		

P-T-Ls ports <a>T prearranged for external/internal drain <a>T		
Code numbers		
PDE07110000	PDE07110010	
BSPP	UN-UNF	
Connections thread see page	Connections thread see page	



PDV74 Proportional Valve **PDE** modules - MID end sections

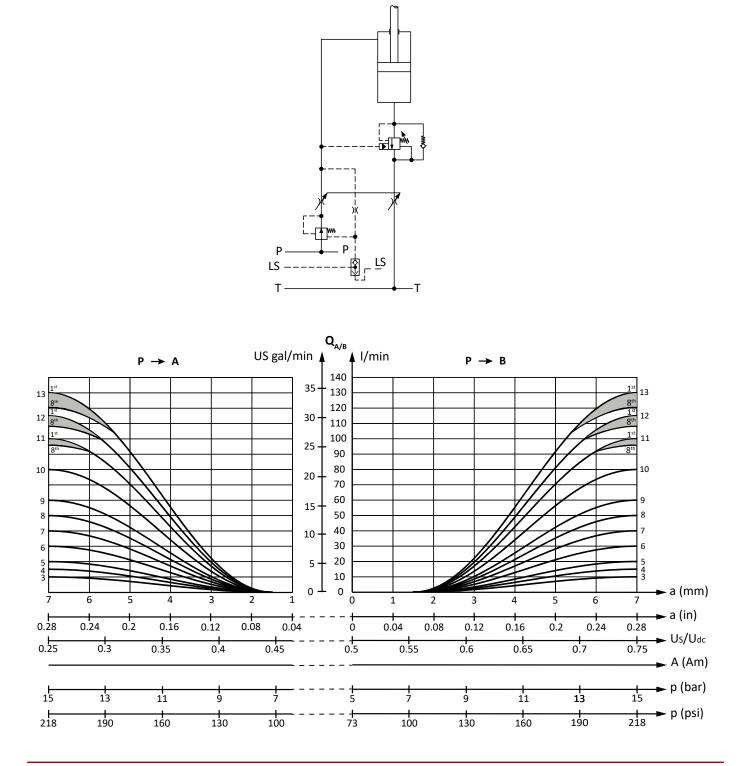

Hydraulic diagram Description Product MID end section T Ls ΤР Ту ΤΓ Code numbers Ι PDEM7010000 PDEM7010010 Ту BSPP UN-UNF T Ls Ту ΤР Ls, Ty ports 7/16"-20UNF-Ls, Ty ports 1/4" 2B



PDV74 Proportional Valve **PDZ** module - Dual spool control

PDZ is a small HIC body that can be matched with any kind of PDV74 working section PDW, to get hydraulic and electro-hydraulic spool control

PDZ overrall dimensions	For open loop spool control	For closed loop spool control
	PDZ70000000 1/4″ BSPP - 12 mm deep	PDZ 1/4″ BSPP - 12 mm deep
	PDZ [7⁄16 in-20 UNF-2B - 0,47 in deep]	PDZ [7⁄i6 in-20 UNF-2B - 0,47 in deep]



PDV74 Proportional Valve PDS Modules - Flow control main spool

Oil flow characteristics

With flow control spool, the oil flow depends on type of PDW module (with or without pressure compensator) and type of pump (fixed or variable displacement).

In the below chart, the ordinate numbers refer to spool size, and the ordinal numbers refer to the same spool size but fitted in a different position with related lost flow.

PDV74 Proportional Valve PDS modules - Flow control main spool

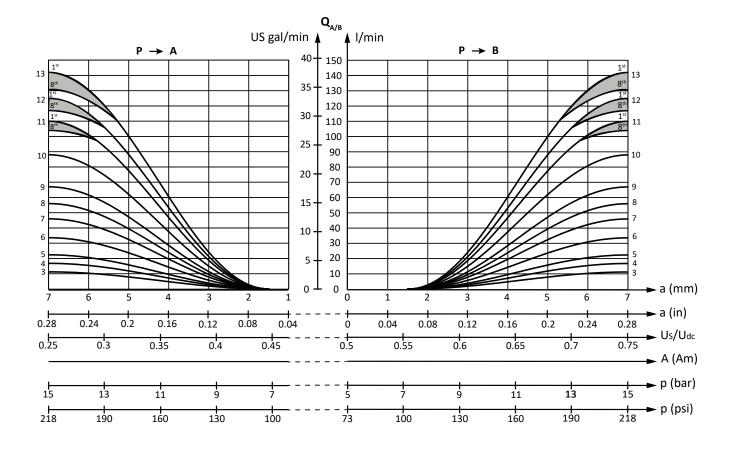
	Double acting flow control spool					
			Code number	rs and symbol		
Size	Max oil flow pressure compensated I/min			ВА () () () () () () () () () ()	ВА	
		4-way, 3-position - A, B closed	4-way, 3-position, A, B → T	4-way, 3-position, B → T; A closed	4-way, 3-position, A → T; B closed	
1	5	PDS00210101	PDS00210101 PDS00220102 PDS00280101 PDS00280102			
2	7,5	PDS00210102 PDS00220103 PDS00280103 PDS00280104				
3	10	PDS00210103	PDS00210103 PDS00220104 PDS00280105 PDS00280106			
4	15	PDS00210105	PDS00210105 PDS00220106 PDS00280107 PDS00280108			
5	20	PDS00210106	PDS00220107	PDS00280109	PDS00280110	
5,5	25	PDS00210121	PDS00220122	PDS00280111	PDS00280112	
6	30	PDS00210107	PDS00220108	PDS00280113	PDS00280114	
7	40	PDS00210109	PDS00220110	PDS00280115	PDS00280116	
8	50	PDS00210110	PDS00220111	PDS00280117	PDS00280118	
9	60	PDS00210111	PDS00220112	PDS00280119	PDS00280120	
10	80	PDS00210113	PDS00220114	PDS00280121	PDS00280122	
11	100	PDS00210115 PDS00220116 PDS00280123 PDS00280124				
12	115	PDS00210117 PDS00220118 PDS00280125 PDS00280126				
13	130	PDS00210119	PDS00220120	PDS00280127	PDS00280128	

	Double acting asymmetric flow control spool					
Max o	oil flow		Code number	rs and symbol		
compe	ssure ensated nin					
A	В	4-way, 3-position - A, B closed	4-way, 3-position, A, B → T	4-way, 3-position, B → T, A closed	4-way, 3-position, A \rightarrow T, B closed	
15	7,5	PDS00230101	PDS00230102	PDS00270103	PDS00270102	
20	40	PDS00230117	PDS00230118	PDS00270119	PDS00270120	
25	15	PDS00230123	PDS00230124	PDS00270125	PDS00270126	
30	40	-	PDS00230116	PDS00270115	PDS00270116	
40	20	PDS00230105	PDS00230104	PDS00270101	PDS00270104	
40	30	PDS00230115	-	PDS00270117	PDS00270118	
40	60	PDS00230113	PDS00230114	PDS00270113	PDS00270114	
50	30	PDS00230121	PDS00230122	PDS00270123	PDS00270124	
60	40	PDS00230125	PDS00230126	-	-	
65	30	PDS00230107	PDS00230106	PDS00270105	PDS00270106	
75	30	PDS00230103	PDS00230112	PDS00270111	PDS00270112	
80	40	PDS00230119	PDS00230120	PDS00270121	PDS00270122	
110	40	PDS00230109	PDS00230108	PDS00270107	PDS00270108	
130	60	PDS00230111	PDS00230110	PDS00270109	PDS00270110	

PDV74 Proportional Valve PDS modules - Flow control main spool

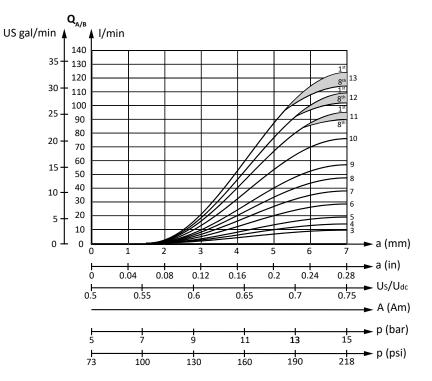
Single acting flow control spool				
		Symbol and c	ode numbers	
Size	Max oil flow pressure compensated I/min	$ \begin{array}{c} \mathbf{B} \mathbf{A} \\ \hline $	$\begin{array}{c c} B & A \\ \hline & & \downarrow \downarrow$	
		3-way, 3-position	3-way, 3-position	
		$P \rightarrow A$	$P \rightarrow B$	
1	7,5	PDS00750101	PDS00750102	
2	15	PDS00750103	PDS00750104	
3	20	PDS00750105	PDS00750106	
4	30	PDS00750107	PDS00750108	
5	40	PDS00750109	PDS00750110	
6	50	PDS00750111	PDS00750112	
7	60	PDS00750113	PDS00750114	
8	80	PDS00750115	PDS00750116	
9	100	PDS00750117	PDS00750118	

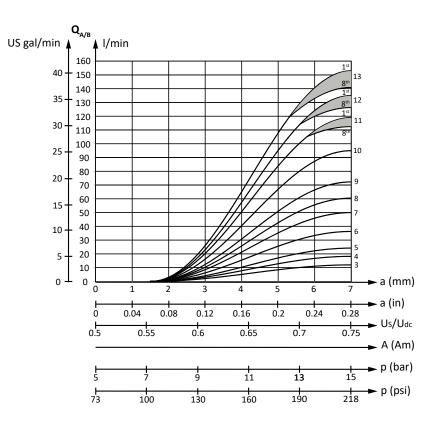
	Double acting flow control spool, floating position			
		Symbol and c	ode numbers	
Size	Max oil flow pressure compensated I/min	$\begin{array}{c c} & \mathbf{B} \ \mathbf{A} \\ \hline \begin{matrix} \mathbf{i} \ \mathbf{k} \ \mathbf{i} \ \mathbf{i} \ \mathbf{j} \ \mathbf{i} \ \mathbf{j} \ \mathbf$		
		3-way, 4-position floating position on A port	3-way, 4-position floating position on B port	
1	10	PDS00730101	PDS00740101	
2	15	PDS00730102	PDS00740102	
3	25	PDS00730103	PDS00740103	
4	40	PDS00730104	PDS00740104	
5	50	PDS00730105	PDS00740105	


Spool centered set, code numbers (needed for any kind of flow control spool)			
Tightening torque		Tightening torque	
6 ⁺¹ ₀ Nm		6 ⁺¹ ₀ Nm	
53,1 ^{+8,85} lb*in		53,1 ^{+8,85} lb*in	
Manual control	PDR00300101		
Hydraulic - Electrohydraulic	PDR00300102		

	Double acting flow control, regenerative function			
	Symbol and code numbers			
Size	Max oil flow pressure compensated I/min		$\begin{array}{c c} B & A \\ \hline & \downarrow \downarrow$	
	-	Regenerative circuit on A port	Regenerative circuit on B port	
1	7,5			
2	15	PDS00610103	PDS00610104	
3	20	PDS00610105	PDS00610106	
4	30	PDS00610107	PDS00610108	
5	40	PDS00610109	PDS00610110	
6	50	PDS00610111	PDS00610112	
7	60			
8	80	PDS00610115	PDS00610116	
9	100			
10	130			

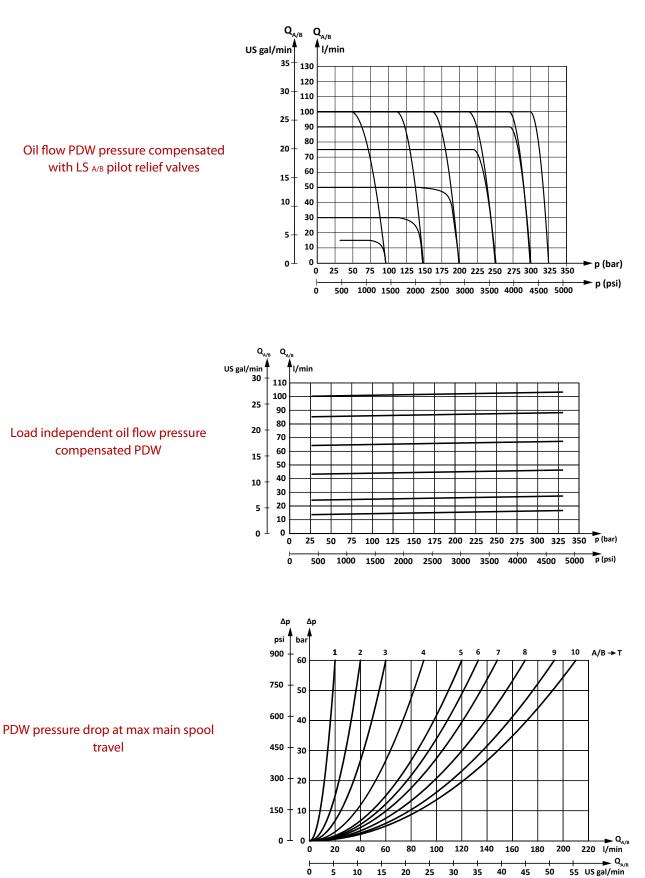
Spool centered set, code numbers (needed for any kind of flow control spool)			
Tightening torque		Tightening torque	
6 ⁺¹ ₀ Nm		6 ° Nm	
53,1 ^{+8,85} lb*in		53,1 ^{+8,85} lb*in	
Manual control	PDR00300101		
Hydraulic - Electrohydraulic	PDR00300102		


99740000PDV AA 02/02/2021



PDV74 Proportional Valve Technical characteristics

Oil flow characteristics PDW without pressure compensator, and pump differential pressure setting = 16 bar



Oil flow characteristics PDW without pressure compensator, and pump differential pressure setting = 25 bar

PDV74 Proportional Valve Technical characteristics

OMFB HYDRAULIC POWER CONTROL

PDV74 Proportional Valve PDS modules - Pressure control main spool

By using proportional directional valves along with overcenter valves, instability problems may occurs in the form of pressure surging.

To suite this problems, spools with different circuit named " Pressure Control " have been developed.

The main purpose of these spools, is to hold in position the 2-way pressure compensator, preventing it from going into unstable condition, and in turn, to keep the overcenter's pilot pressure value as stable as possible.

Pressure control spools, must always be used with pressure compensated working sections equipped with pilot LS A/B relief valves.

Pressure control spool, normally give a higher degree of stability to whole hydraulic system, however, we advise to look after their use, because:

- The valve may loose a bit of pressure compensation, becoming load dependent.
- The pump pressure may be considerably higher than that necessary to move the load.

99740000PDV AA 02/02/2021

	Pressure control spool						
		Symbol and code numbers (PC = Pressure control - FC = Flow control)					
Size							
	4-way, 3-position, A, B closed	4-way, 3-position, A, B throttled open to T	4-way, 3-position, A, B closed	4-way, 3-position, A, B closed	4-way, 3-position, A throttled open to T, B closed	4-way, 3-position, A closed, B throttled open to T	
1	PDS00710113 PC→A + B	PDS00720114 PC→A + B	PDS00760113 PC \rightarrow A FC \rightarrow B, Q=I/min	PDS00770114 PC→B FC→A, Q=I/min	PDS00780113 PC→A FC→B, Q=I/min	PDS00790114 PC→B FC→A, Q=I/min	
	-	-	PDS00760121 PC→A FC→B, Q=I/min	-	-	-	
2	PDS00710115 PC→A + B	PDS00720116 PC→A + B	PDS00760115 PC→A FC→B, Q=I/min	PDS00770116 PC→B FC→A, Q=I/min	PDS00780115 PC→A FC→B, Q=I/min	PDS00790116 PC→B FC→A, Q=I/min	
3	PDS00710117 PC→A + B	PDS00720118 PC→A + B	PDS00760117 PC→A FC→B, Q=I/min	PDS00770118 PC→B FC→A, Q=I/min	PDS00780117 PC→A FC→B, Q=I/min	PDS00790118 PC→B FC→A, Q=I/min	
3,5	PDS00710111 PC→A + B	PDS00720112 PC→A + B	PDS00760111 PC→A FC→B, Q=I/min	PDS00770112 PC→B FC→A, Q=I/min	PDS00780111 PC→A FC→B, Q=I/min	PDS00790112 PC→B FC→A, Q=I/min	
4	PDS00710119 PC→A + B	PDS00720120 PC→A + B	PDS00760119 PC→A FC→B, Q=I/min	PDS00770120 PC→B FC→A, Q=I/min	PDS00780119 PC→A FC→B, Q=I/min	PDS00790120 PC→B FC→A, Q=I/min	

Spool centered set, code numbers (needed for any kind of flow control spool)					
Tightening torque		Tightening torque			
6 ⁺¹ ₀ Nm		6 ⁺¹ ₀ Nm			
53,1 ^{+8,85} lb*in		53,1 ^{+8,85} lb*in			
Manual control					
Hydraulic - Electrohydraulic PDR00300102					

PDV74 Proportional Valve Modules and code numbers

Product	Description	Aluminium	Cast iron		
PDM		With	lever		
		PDM10101000	PDM11101000		
	Mechanical actuation	Withou	ut lever		
32 01		PDM101000000	PDM11100000		
PDM	Mechanical actuation, with flow adjustement nuts protection	PDM10200000	PDM11200000		
PDM	Mechanical actuation with directional sensors for electri-	With lever			
	cal monitoring of spool valve movement	Normally closed: PDM11111000 Normally open: PDM11121000	PDM11111000		
	→ Blue → Gnd - Vcc 10 V 30 V IL < 200 mA		PDM11121000		
PDF	Friction detent	Cast ire	Cast iron only		
	(for mechanical actuation only)	PDF1000000	000000		
	Flow adjustement protection nuts for PDM mechanical control				

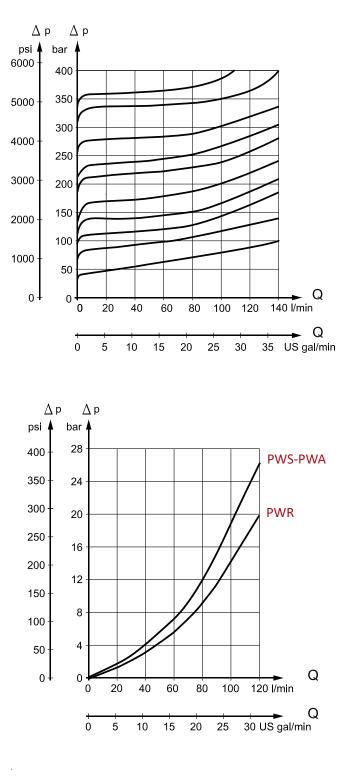
PDV74 Proportional Valve Modules and code numbers

Product	Description	Aluminium	Cast iron
PDC	Rear cover for mechanical actuation	PDC0000000	PDC1000000
PDH		A/B pilot port 1/4 BSPP deep: 12 mm (0,47 in) PDH70000000	A/B pilot port 1/4 BSPP deep: 12 mm (0,47 in) PDH71000000
	Hydraulic actuation	7/16-20UNF-2B 7/16-20UNF-2 deep: 12 mm (0,47 in) deep: 12 mm (0,47 in)	A/B pilot port 7/16-20UNF-2B deep: 12 mm (0,47 in) PDH71000100
	Pilot LS A/B relief valve	50 ÷ 80 bar	PDH71000000 A/B pilot port 7/16-20UNF-2B deep: 12 mm (0,47 in)
		81 ÷ 380 bar	PLS0A400000
	Plug for pilot LS A/B relief valve cavity	PLS0P00000	

PDV74 Proportional Valve Modules and code numbers - Detent

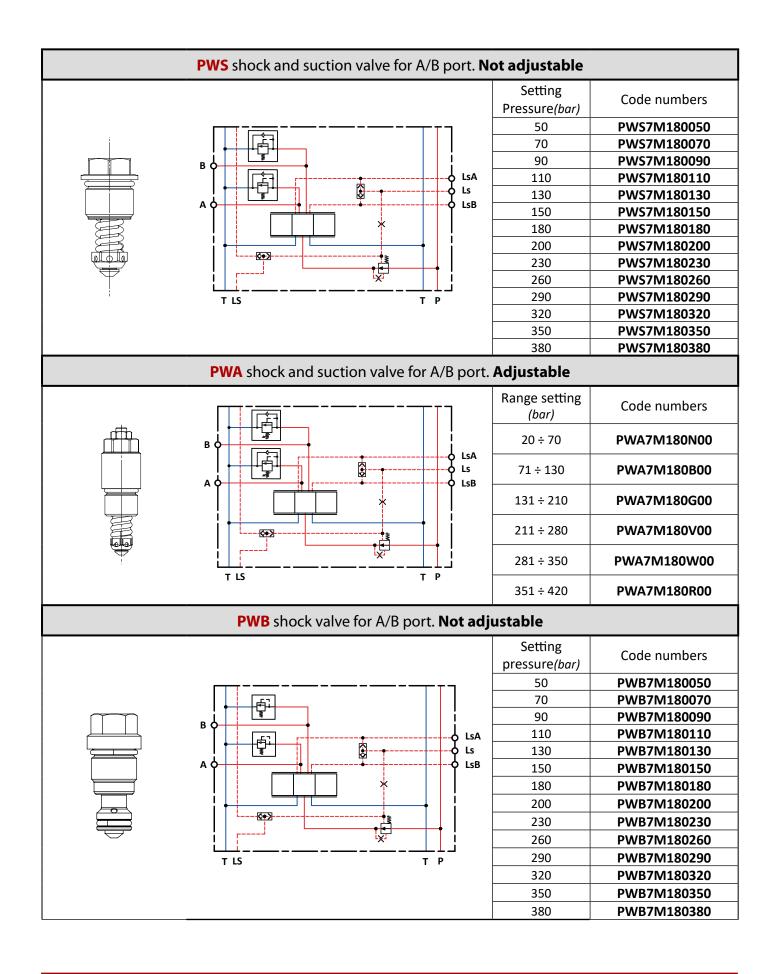
Product	Description	Aluminium	Cast iron
PDD		P→A - lock P→B - free PDD70100000	
		P→A - free P→B - lock PDD70010000	
	Mechanical spool lock device, manual release	P→A - lock P→B - lock PDD70110000	
		P→A - float P→B - free PDD70200000	
		P→A - free P→B - float PDD70020000	

PDV74 Proportional Valve Modules and code numbers

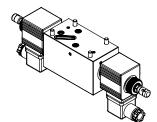

Product	Description	Code n	umbers
PIZ	For PDI with internal pilot oil supply	PIZ1000000	
PIY	For PDI with external pilot oil supply	A/B pilot port 1/4 BSPP deep: 12 mm (0,47 in) PIY10000000 PIY10000010	
	For PDE with external drain line electrical actuation	A/B pilot port 1/4 BSPP deep: 12 mm (0,47 in) PED10000000 A/B pilot port 7/16-20UNF-2B deep: 12 mm (0,47 in) PED10000010	
	For PDE with internal drain line electrical actuation	PEI1000000	
	For PDE with LS carry-over	A/B pilot port 1/4 BSPP deep: 12 mm (0,47 in) PED20000000 PED20000000 PED200000010	
	For PDE prearranged LS carry-over	PEI1000000	

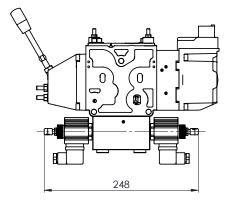
PDV74 Proportional Valve Technical features

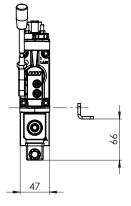
PWS, PWA and PWB are shock suction valves design to absorb shock effects only, and they should never be used as a pressure relief valves.


PWS, PWA and PWB are set at an oil flow of 10 l/min. If the hydraulic actuator requires a pressure relief valve function, a PDW module with built-in LS A/B pilot pressure limit valves should be used

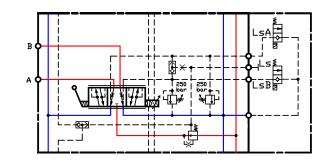
PWR suction valve


PDV74 Proportional Valve Shock and suction valves




PWR suction valve for A/B port				
Product	Hydraulic diagram	Code numbers		
		PWR7M180000		
	Plug for PWS - PWA - PWB and PWR cavity			
Product	Hydraulic diagram	Code numbers		
		PWP7M18000		

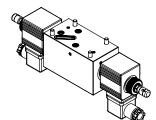
PDV74 Proportional Valve PDL module - Electrical LSA/B unloading ON-OFF actuation normally closed

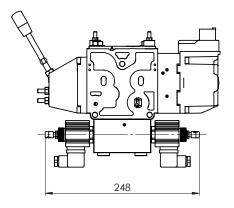


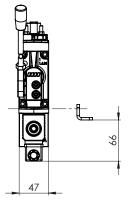
When PDL is energized, the piloting signal is lead to tank and in turn the work port oil flow will be cutted off.

PDL modules is always to be matched with PDW pressure compesated.

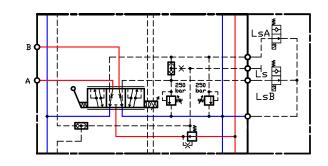
	PDL code numbers				
Hydraulic diagram	Connector type	12V dc	24V dc		
Active on LsA	Deutsch Parallel	PDL12C11200	PDL12C31200		
LsB T Ls LsA 	Deutsch Perpendicular	PDL12C12200	PDL12C32200		
	DIN	PDL12C13200	PDL12C33200		
لــــــــــــــــــــــــــــــــــــ	JPT	PDL12C14200	PDL12C34200		
Active on LsB	Deutsch Parallel	PDL13C11200	PDL13C31200		
□	Deutsch Perpendicular	PDL13C12200	PDL13C32200		
	DIN	PDL13C13200	PDL13C33200		
LsB	JPT	PDL13C14200	PDL13C34200		
Active on LsA and LsB	Deutsch Parallel	PDL11C11200	PDL11C31200		
┍┄╌┯╴╴┯╴╴╼╸╴┯╌┄┓ ╎┍╶┽╴╎╴╎╴┿╶┐╎	Deutsch Perpendicular	PDL11C12200	PDL11C32200		
	DIN	PDL11C13200	PDL11C33200		
نے۔۔۔۔۔ LsB LsA	JPT	PDL11C14200	PDL11C34200		
Active on Ls	Deutsch Parallel	PDL14C11200	PDL14C31200		
F·····� - · · - · · · · · · · · · · · · ·	Deutsch Perpendicular	PDL14C12200	PDL14C32200		
	DIN	PDL14C13200	PDL14C33200		
LLs	JPT	PDL14C14200	PDL14C34200		




PDV74 Proportional Valve **PDL** module


	PDL code numbers			
Hydraulic diagram	Connector type	12V dc	24V dc	
Active on LsA	Deutsch Parallel	PDL32C11200	PDL32C31200	
	Deutsch Perpendicular	PDL32C12200	PDL32C32200	
	DIN	PDL32C13200	PDL32C33200	
·	JPT	PDL32C14200	PDL32C34200	
Active on LsB	Deutsch Parallel	PDL33C11200	PDL33C31200	
	Deutsch Perpendicular	PDL33C12200	PDL33C32200	
	DIN	PDL33C13200	PDL33C33200	
ii	JPT	PDL33C14200	PDL33C34200	
Active on LsA and LsB	Deutsch Parallel	PDL35C11200	PDL35C31200	
	Deutsch Perpendicular	PDL35C12200	PDL35C32200	
	DIN	PDL35C13200	PDL35C33200	
ii	JPT	PDL35C14200	PDL35C34200	
Active on Ls	Deutsch Parallel	PDL34C11200	PDL34C31200	
	Deutsch Perpendicular	PDL34C12200	PDL34C32200	
	DIN	PDL34C13200	PDL34C33200	
[i	JPT	PDL34C14200	PDL34C34200	

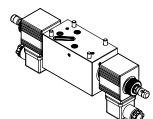
PDV74 Proportional Valve PDL module - Electrical LSA/B unloading ON-OFF actuation normally open

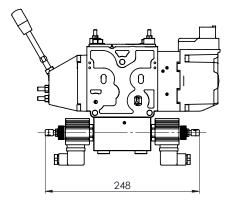


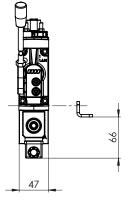
When PDL is deenergized, the piloting signal is lead to tank and in turn the work port oil flow will be cutted off.

PDL modules is always to be matched with PDW pressure compesated.

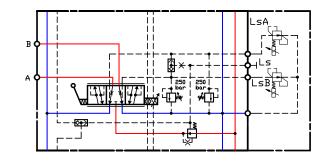
PDL code numbers			
Hydraulic diagram	Connector type	12V dc	24V dc
Active on LsA LsB T Ls LsA	Deutsch Parallel	PDL32A11100	PDL32A31100
Горикански страна Горикански	Deutsch Perpendicular	PDL32A12100	PDL32A32100
	DIN	PDL32A13100	PDL32A33100
	JPT	PDL32A14100	PDL32A34100
Active on LsB	Deutsch Parallel	PDL33A11100	PDL33A31100
Г фффф	Deutsch Perpendicular	PDL33A12100	PDL33A32100
	DIN	PDL33A13100	PDL33A33100
	JPT	PDL33A14100	PDL33A34100
Active on LsA and LsB	Deutsch Parallel	PDL35A11100	PDL35A31100
	Deutsch Perpendicular	PDL35A12100	PDL35A32100
	DIN	PDL35A13100	PDL35A33100
	JPT	PDL35A14100	PDL35A34100
Active on Ls	Deutsch Parallel	PDL34A11100	PDL34A31100
Гфффф	Deutsch Perpendicular	PDL34A12100	PDL34A32100
	DIN	PDL34A13100	PDL34A33100
L	JPT	PDL34A14100	PDL34A34100



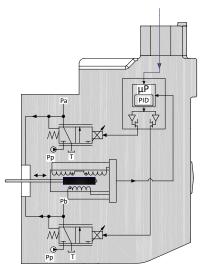

PDV74 Proportional Valve **PDL** module


PDL code numbers			
Hydraulic diagram	Connector type	12V dc	24V dc
Active on LsA	Deutsch Parallel	PDL12A11100	PDL12A31100
	Deutsch Perpendicular	PDL12A12100	PDL12A32100
	DIN	PDL12A13100	PDL12A33100
لــــــــــــــــــــــــــــــــــــ	JPT	PDL12A14100	PDL12A34100
Active on LsB	Deutsch Parallel	PDL13A11100	PDL13A31100
	Deutsch Perpendicular	PDL13A12100	PDL13A32100
	DIN	PDL13A13100	PDL13A33100
LsB	JPT	PDL13A14100	PDL13A34100
Active on LsA and LsB	Deutsch Parallel	PDL11A11100	PDL11A31100
│ ┌·─·- ◇ ◇ ◇ ◇ ○ ·····┐	Deutsch Perpendicular	PDL11A12100	PDL11A32100
	DIN	PDL11A13100	PDL11A33100
LsB LsA	JPT	PDL11A14100	PDL11A34100
Active on Ls	Deutsch Parallel	PDL14A11100	PDL14A31100
┌	Deutsch Perpendicular	PDL14A12100	PDL14A32100
	DIN	PDL14A13100	PDL14A33100
L	JPT	PDL14A14100	PDL14A34100

PDV74 Proportional Valve PDLD module - Electrical LSA/B unloading Proportional actuation normally open (current signal mA)



PDLD is an electro-hydraulic device that allows the A/B port working pressure to be remotely an proportionally operated according to a current signal (mA). When the working pressure exceed the setting pressure value, the A/B port oil flow will be cutted off.


When PDLD is not energized, PDW is almost pressureless, as well as the A-B oil flow is cutted off.

	PDLD code numbers				
Hydraulic diagram	Connector type	12V dc	24V dc		
Active on LsA	Deutsch Parallel	PDL12D11000	PDL12D31000		
LSA Active on LSB LSB T LS LSA	Deutsch Parallel	PDL13D11000	PDL13D31000		
LSB Active on LSA and LSB LSB T LS LSA LSB LSA	Deutsch Parallel	PDL11D11000	PDL11D31000		
Active on Ls LsB T Ls LsA LsB T Ls LsA Ls	Deutsch Parallel	PDL14D11000	PDL14D31000		

OMFB HYDRAULIC POWER CONTROL

PDV74 - PEAC111 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0,5 Udc

PEAC111 is a proportional high performance PDV spool actuation with integrated electronics and inductive transducer (LVDT) that operates safely and precisely the main spool movement according to an electrical signal coming from a remote control. The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

The spool position is detected in the LVDT transducer which generates an electric feed-back signal registered by the electronics. The variation between the input signal and the feed-back signal, actuates the solenoid valves accordingly, so that, the hydraulic pilot pressure will drive the main spool in the right position.

All PEAC111 modules comes with integrated fault monitoring system, available in two version:

Active version Passive version

Active fault monitoring

When an error state is detected, the two proportional solenoid valves will be automatically deactivated, a red lamp will light-up and drive the spool in neutral position (if it's not seized up). The system will only react to failures of more than 500 ms (in other words there is delay of half a second before anything happens). An alarm signal is sent out through the connector, and minus is opened.

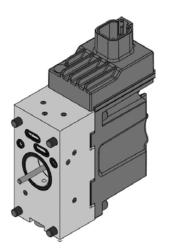
This error state is memorized, and continues until the system is being reset by switching off the supply voltage.

Shortly, when the active fault monitoring system is connected and an error state is detected, the system ensures a fast and operator free reaction, that will put the complete hydraulic circuit into venting conditions, thus preventing uncontrollable machine movements.

Passive fault monitoring

When an error state is detected, the two proportional solenoid valves will not be deactivated, a red lamp will light-up, but still control the main spool.

When a fault condition occurs, after a delay of 250 ms an alarm signal is sent out through a devoted pin


This state is not memorized, and when the faulty state disappears, the alarm signal will turn to passive again.

In order to prevent the electronic from going into an undefined state, any time the system is being triggered or reset, a general check of power supply and the internal clock frequency is made.

The use of PEAC111 module both passive or active version, allows the machines hydraulic system to be made with different level of safety degree that for the choice of which it is essential to know the exactly required functions.

When the PEAC111 module active version is connected with the pump unloading system, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.

PDV74 - PEAC111 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0,5 Udc

Reaction time (constant voltage)

Reaction time (neutral switch)

OMIFIB

HYDRAULIC POWER CONTROL

PEAC111 is defined by:

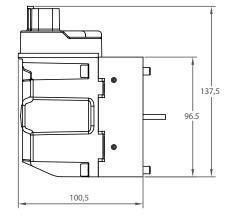
- Inductive transducer with resolution < 12 μm
- Integrated diagnosis and error memory
- Fault monitoring transistor output for signal source
- Higher spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Low hysteresis
- Quicker reaction time
- Spool direction movement output
- Integrated PWM/Pulse Width Modulation
- Low electrical power

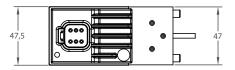
PEAC111 Technical data				
Rated supply voltage		10 ÷ 30 Vdc		
Max ripple		5%		
Signal control		0,5 Udc		
Range control signal		0,25 Udc to 0,75 Udc		
Neutral spool position		0,5 Udc		
Max threshold signal, A port		1 V		
Max threshold signal, B port		1 V		
Max current signal @ rated voltage		48 mA		
Input capacitor		100 ηF		
Signal control impedance		25 kΩ		
Power consumption		8,7 W		
Heat insulation		Class H (180°C)		
Duty cycle		ED 100%		
Max current consumption		650 mA		
Current consumption in neutral position		80 mA		
Coil impedance @ 20°C		8,9 Ω		
Dither frequency		50-200 Hz		
Recommended frequency		100 Hz		
Enclouser degree (El	ectrical wiring excepted)	IP 66 - IP 67 - IP 69K		
Weight cast iron body		1,8 kg		
Weight aluminium body		1,3 kg		
	debugging parameters and set-up function a h connector AT04-6P (to be matched with AT06			
Foult monitoring system	Max current on safety output (pin 5)	50 mA		
Fault monitoring system	Reaction time a fault	500 ms		
Max current output signal for spool direction moviment		50 mA		
Reaction time (constant voltage)	From neutral position to max spool travel	110 - 140 ms		

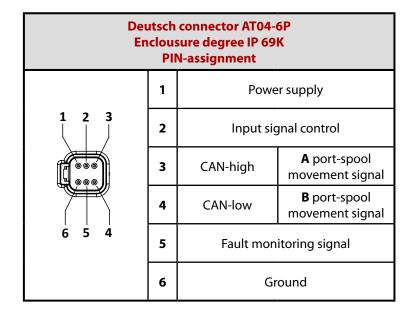
From max spool travel to neutral

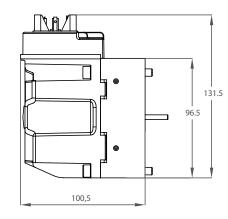
From max spool travel to neutral

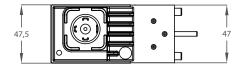
From neutral position to max spool travel

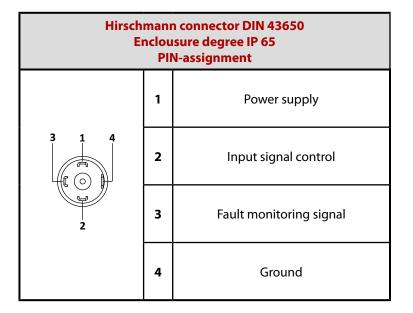

70 - 90 ms

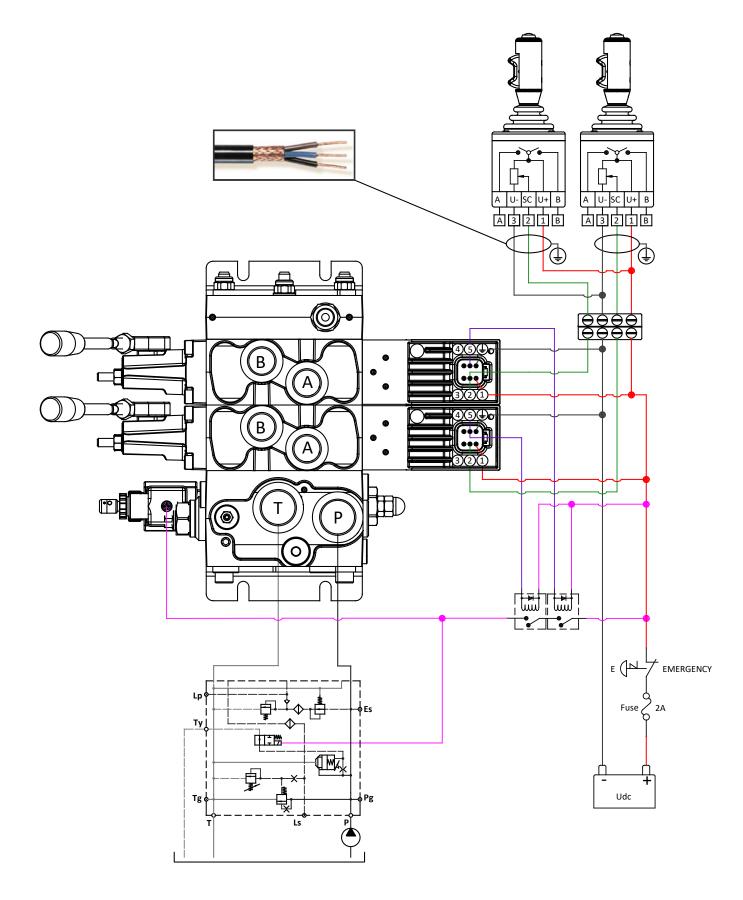

130 - 170 ms


70 - 90 ms

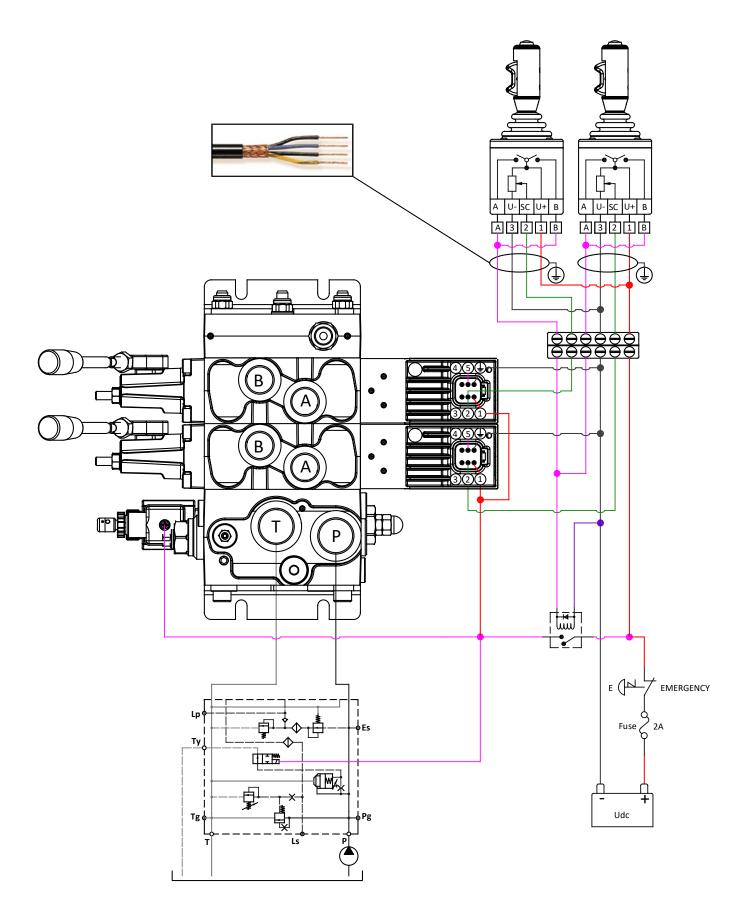



PDV74 - PEAC111 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal 0,5 Udc - Electrical connectors

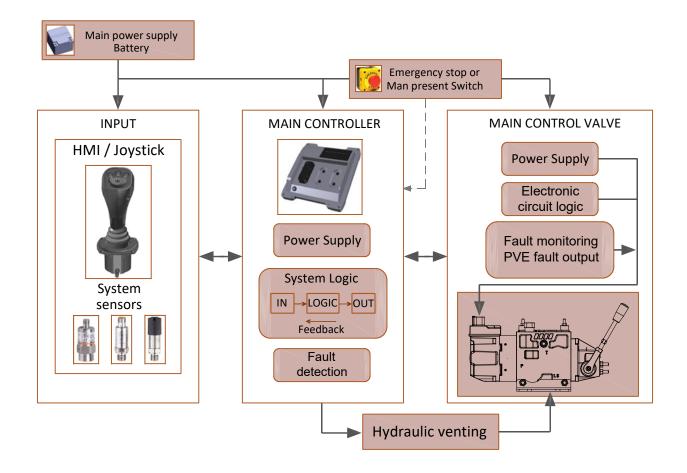




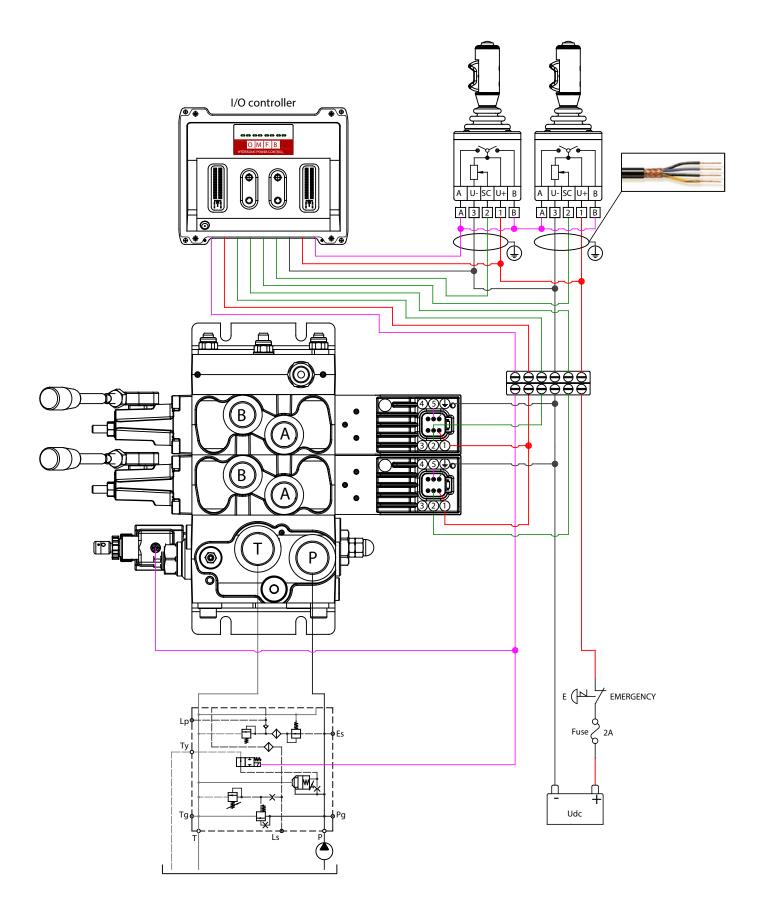
	Code numbers			
Connector version	Active version		Passive version	
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch AT04-6P	PEAC0121000	PEAC1121000	PEAC0111000	PEAC1111000
DIN 43650	PEAC0121200	PEAC1121200	PEAC0111200	PEAC1111200

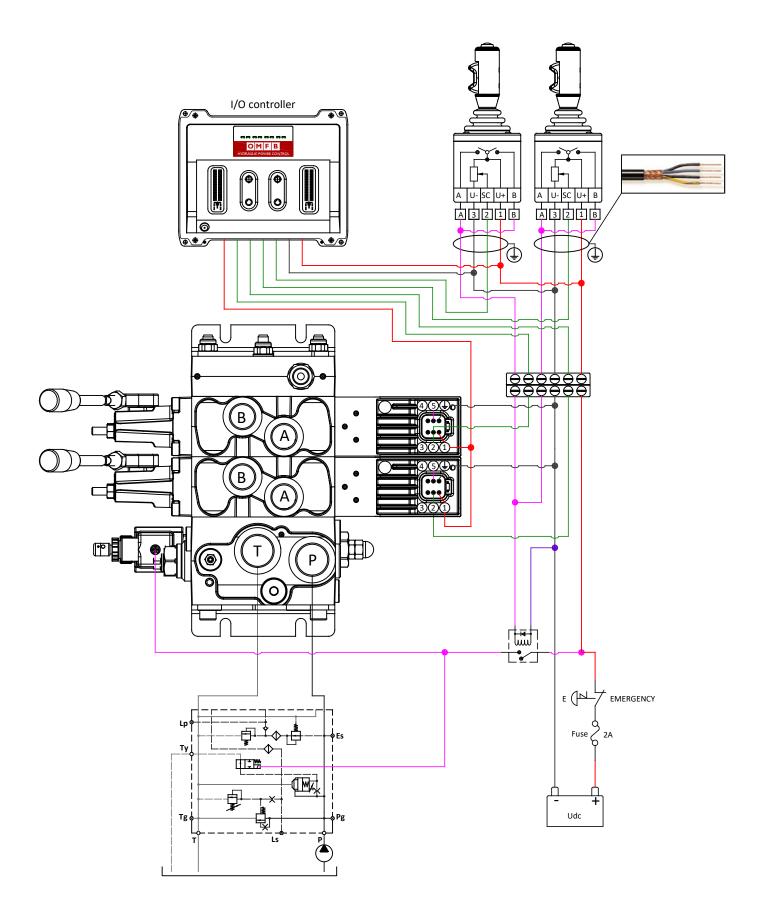


PDV74 - PEAC111 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0,5 Udc

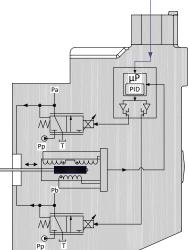


PDV74 - PEAC111 Electro-hydraulic proportional actuation **Closed loop spool control**, high performance resolution **Input signal control 0,5 Udc**





PDV74 - PEAC111 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc



PDV74 - PEAC111 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc

OMFB HYDRAULIC POWER CONTROL

PDV74 - PEAC112 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V

PEAC112 is a proportional high performance PDV spool actuation with integrated electronics and inductive transducer (LVDT) that operates safely and precisely the main spool movement according to an electrical signal coming from a remote control. The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

The spool position is detected in the LVDT transducer which generates an electric feed-back signal registered by the electronics. The variation between the input signal and the feed-back signal, actuates the solenoid valves accordingly, so that, the hydraulic pilot pressure will drive the main spool in the right position.

All PEAC112 modules comes with integrated fault monitoring system, available in two version:

Active version Passive version

Active fault monitoring

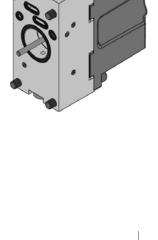
When an error state is detected, the two proportional solenoid valves will be automatically deactivated, a red lamp will light-up and drive the spool in neutral position (if it's not seized up). The system will only react to failures of more than 500 ms (in other words there is delay of half a second before anything happens). An alarm signal is sent out through the connector, and minus is opened.

This error state is memorized, and continues until the system is being reset by switching off the supply voltage.

Shortly, when the active fault monitoring system is connected and an error state is detected, the system ensures a fast and operator free reaction, that will put the complete hydraulic circuit into venting conditions, thus preventing uncontrollable machine movements.

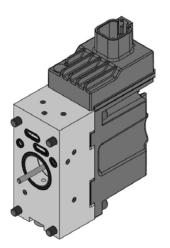
Passive fault monitoring

When an error state is detected, the two proportional solenoid valves will not be deactivated, a red lamp will light-up, but still control the main spool.


When a fault condition occurs, after a delay of 250 ms an alarm signal is sent out through a devoted pin

This state is not memorized, and when the faulty state disappears, the alarm signal will turn to passive again.

In order to prevent the electronic from going into an undefined state, any time the system is being triggered or reset, a general check of power supply and the internal clock frequency is made.

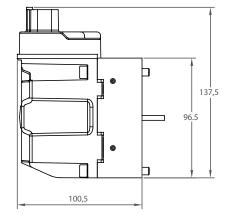

The use of PEAC112 module both passive or active version, allows the machines hydraulic system to be made with different level of safety degree that for the choice of which it is essential to know the exactly required functions.

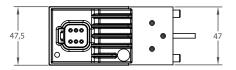
When the PEAC112 module active version is connected with the pump unloading system, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.

OMFB HYDRAULIC POWER CONTROL

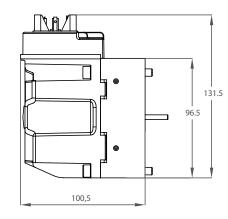
PDV74 - PEAC112 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V

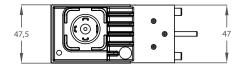
PEAC112 is defined by:

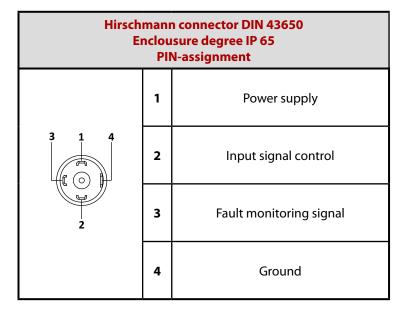

- Inductive transducer with resolution < 12 µm
- Integrated diagnosis and error memory
- Fault monitoring transistor output for signal source
- Higher spool control accuracy
- EMC performace to
- Low hysteresis
- Quicker reaction time
- Spool direction movement output
- Integrated PWM/Pulse Width Modulation
- Low electrical power

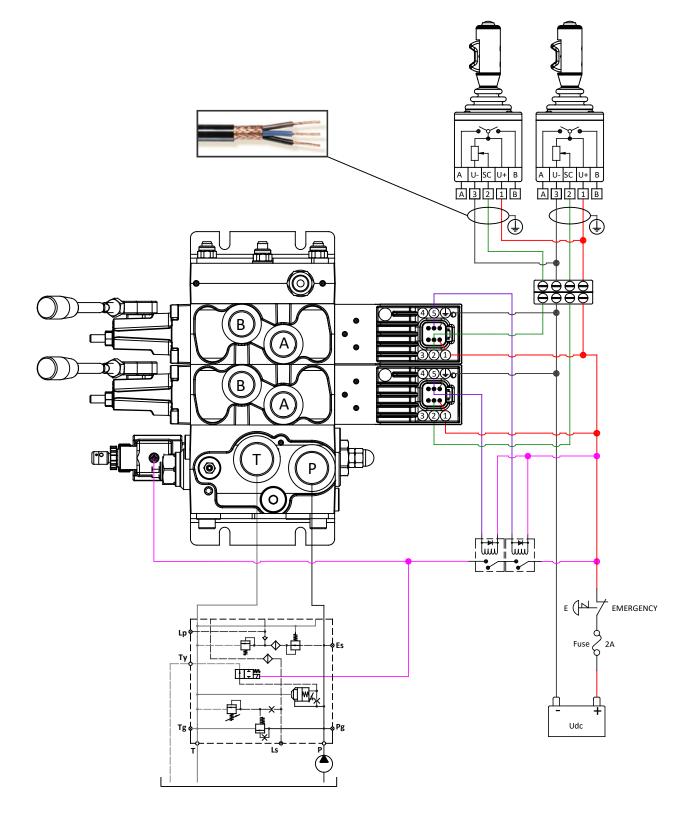

PEAC112 Technical data			
Rated supply voltage		10-30 Vdc	
Max ripple		5%	
Signal control		0-10 V	
Range control signal		2,5 V to 7,5 V	
Neutral spool position		5 V	
Max threshold signal, A port		1 V	
Max threshold signal, B port		1 V	
Max current signal @ rated voltage		48 mA	
Input capacitor		100 ηF	
Signal control impedance		25 kΩ	
Power consumption		8,7 W	
Heat insulation		Class H (180°C)	
Duty cycle		ED 100%	
Max current consumption		650 mA	
Current consumption in neutral position	1	80 mA	
Coil impedance @ 20°C		8,9 Ω	
Dither frequency		50-200 Hz	
Recommended frequency		100 Hz	
Enclouser degree (Electrical wiring excepted)		IP 66 - IP 67 - IP 69K	
Weight cast iron body		1,8 kg	
Weight aluminium body		1,3 kg	
	n, debugging parameters and set-up function sch connector AT04-6P (to be matched with AT	· · · · · · · · · · · · · · · · · · ·	
	Max current on safety output (pin 5)	50 mA	
Fault monitoring system	Reaction time a fault	500 ms	

Fault monitoring system	Max current on safety output (pin 5)	50 mA
	Reaction time a fault	500 ms
Max current output signal for spool direction moviment		50 mA
Reaction time (constant voltage)	From neutral position to max spool travel	110 - 140 ms
	From max spool travel to neutral	70 - 90 ms
Reaction time (neutral switch)	From neutral position to max spool travel	130 - 170 ms
	From max spool travel to neutral	70 - 90 ms

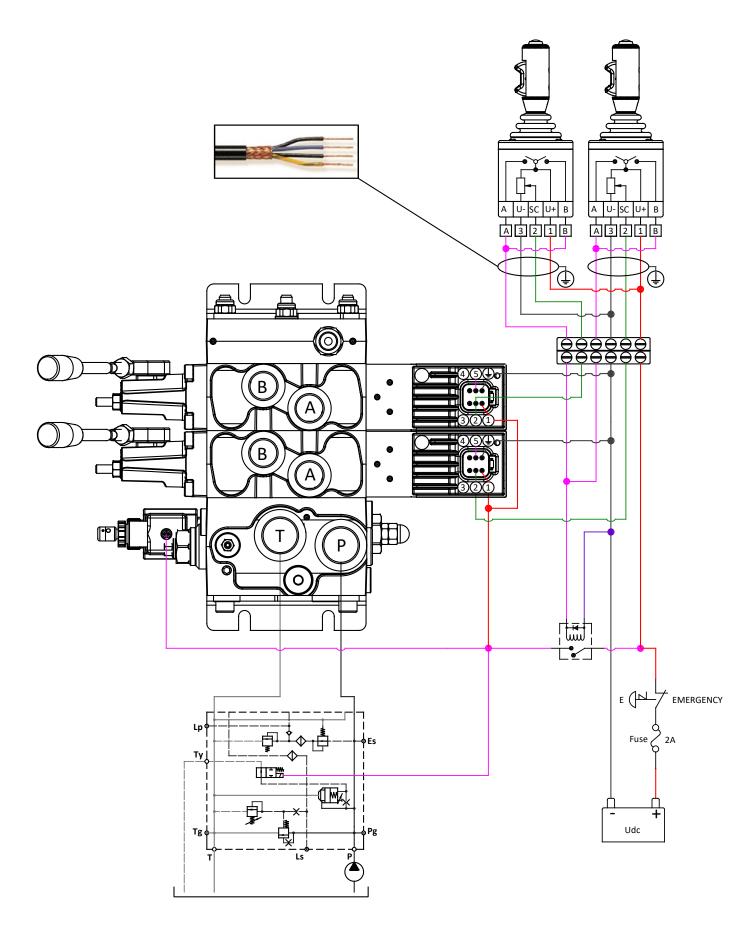



PDV74 - PEAC112 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal 0 ÷ 10 V - Electrical connectors

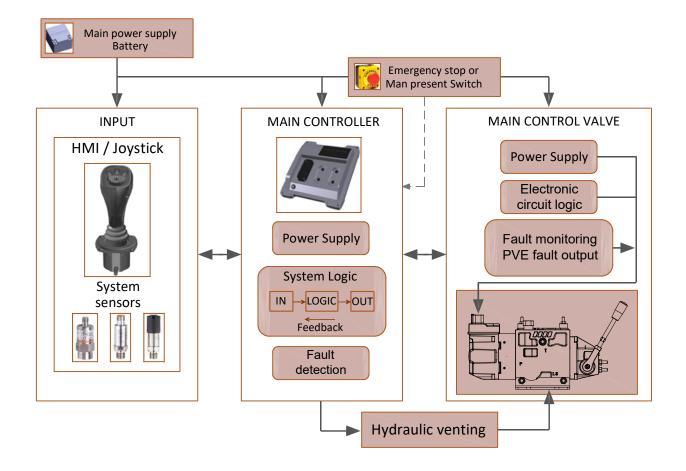




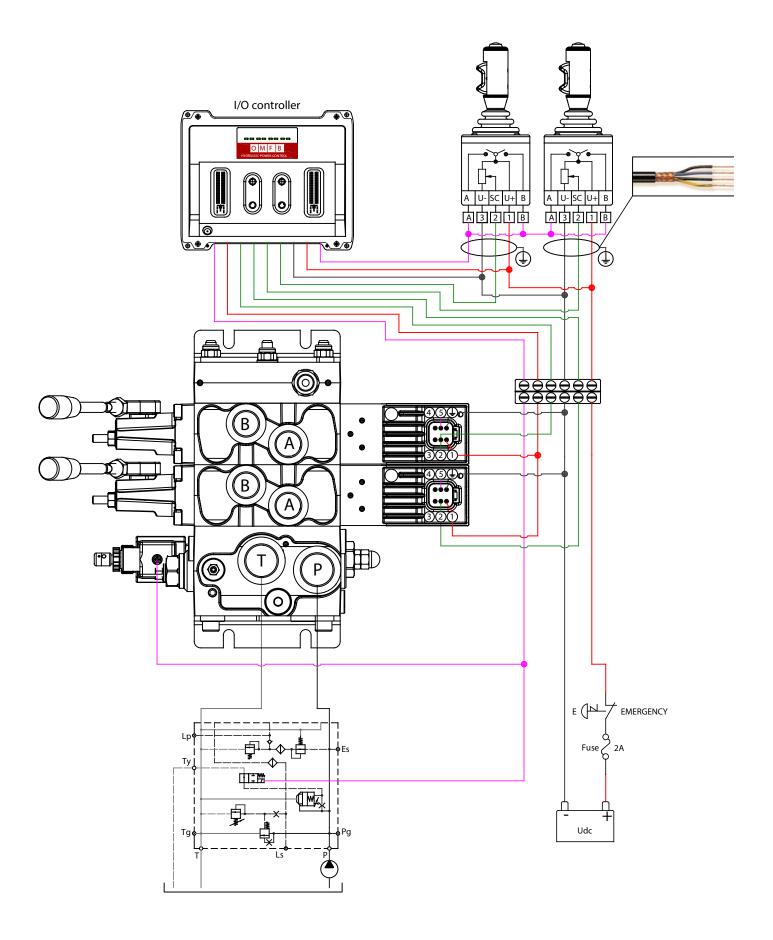
	Code numbers			
Connector version	Active version		Passive version	
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch AT04-6P	PEAC0122000	PEAC1122000	PEAC0112000	PEAC1112000
DIN 43650	PEAC0122200	PEAC1122200	PEAC0112200	PEAC1112200

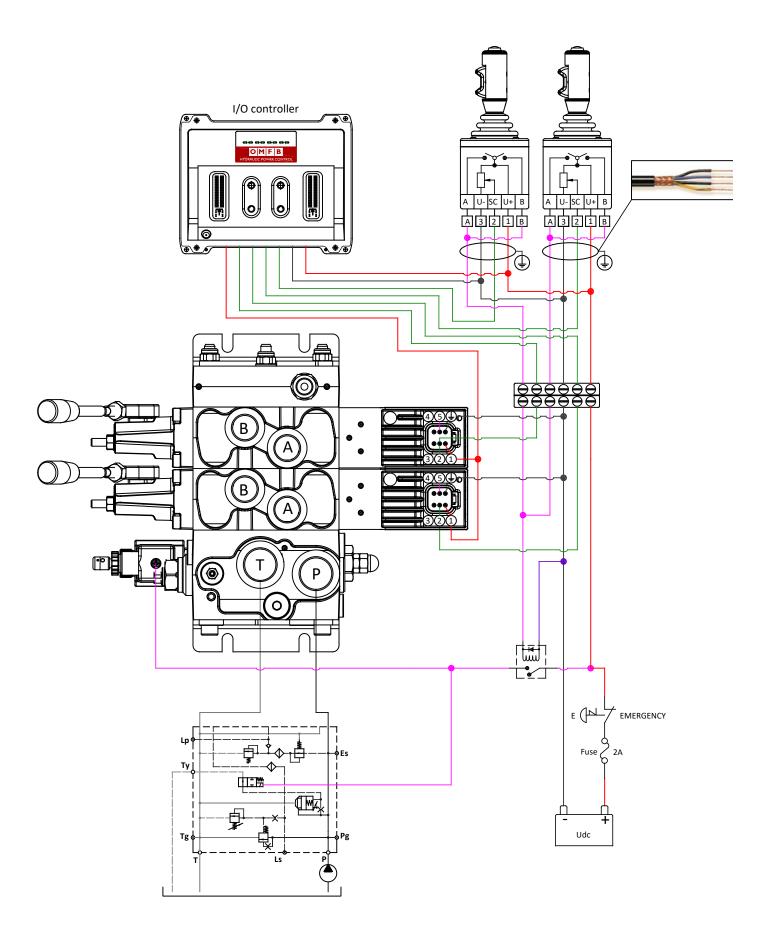


PDV74 - PEAC112 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V

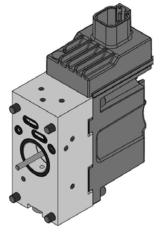


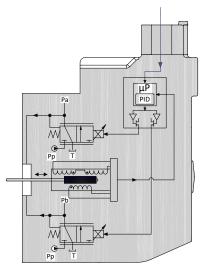
PDV74 - PEAC112 Electro-hydraulic proportional actuation. Closed loop spool control, high performance resolution Input signal control 0 ÷ 10 V





PDV74 - PEAC112 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V




PDV74 - PEAC112 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V

OMFB HYDRAULIC POWER CONTROL

PDV74 - PEAC116 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal 4 ÷ 20 mA

PEAC116 is a proportional high performance PDV spool actuation with integrated electronics and inductive transducer (LVDT) that operates safely and precisely the main spool movement according to an electrical signal coming from a remote control. The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

The spool position is detected in the LVDT transducer which generates an electric feed-back signal registered by the electronics. The variation between the input signal and the feed-back signal, actuates the solenoid valves accordingly, so that, the hydraulic pilot pressure will drive the main spool in the right position.

All PEAC116 modules comes with integrated fault monitoring system, available in two version:

Active version Passive version

Active fault monitoring

When an error state is detected, the two proportional solenoid valves will be automatically deactivated, a red lamp will light-up and drive the spool in neutral position (if it's not seized up). The system will only react to failures of more than 500 ms (in other words there is delay of half a second before anything happens). An alarm signal is sent out through the connector, and minus is opened.

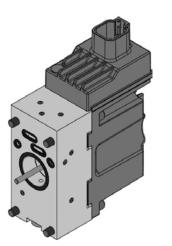
This error state is memorized, and continues until the system is being reset by switching off the supply voltage.

Shortly, when the active fault monitoring system is connected and an error state is detected, the system ensures a fast and operator free reaction, that will put the complete hydraulic circuit into venting conditions, thus preventing uncontrollable machine movements.

Passive fault monitoring

When an error state is detected, the two proportional solenoid valves will not be deactivated, a red lamp will light-up, but still control the main spool.

When a fault condition occurs, after a delay of 250 ms an alarm signal is sent out through a devoted pin


This state is not memorized, and when the faulty state disappears, the alarm signal will turn to passive again.

In order to prevent the electronic from going into an undefined state, any time the system is being triggered or reset, a general check of power supply and the internal clock frequency is made.

The use of PEAC116 module both passive or active version, allows the machines hydraulic system to be made with different level of safety degree that for the choice of which it is essential to know the exactly required functions.

When the PEAC116 module active version is connected with the pump unloading system, the level of safety degree protection for the complete hydraulic system becomes very high, operator free, and helps OEM to meet the PL (Performance Level) required to be comply with the safety demands of Machinery Directive 2006/42/EC.

PDV74 - PEAC116 Electro-hydraulic proportional actuation **Closed loop spool control**, high performance resolution **Input signal control 4 ÷ 20 mA**

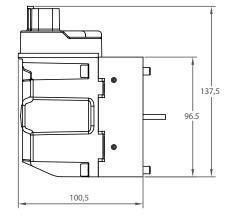
Reaction time (neutral switch)

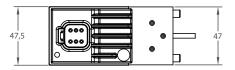
PEAC116 is defined by:

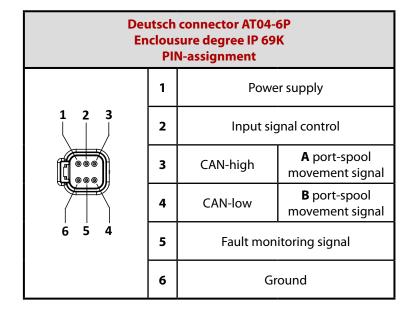
- Inductive transducer with resolution < 12 µm
- Integrated diagnosis and error memory
- Fault monitoring transistor output for signal source
- Higher spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Low hysteresis
- Quicker reaction time
- Spool direction movement output
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

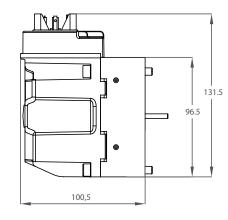
PEAC116 Technical data				
Rated supply voltage		10 ÷ 30 Vdc		
Max ripple		5%		
Signal control		4 ÷ 20 mA		
Range control signal		4 mA to 20 mA		
Neutral spool position		12 mA		
Max threshold signal, A port		1,5 mA		
Max threshold signal, B port		1,5 mA		
Max current signal @ rated voltage		48 mA		
Input capacitor		100 ηF		
Signal control impedance		220 Ω		
Power consumption		8,7 W		
Heat insulation		Class H (180°C)		
Duty cycle		ED 100%		
Max current consumption		650 mA		
Current consumption in neutral position		80 mA		
Coil impedance @ 20°C		8,9 Ω		
Dither frequency		50 ÷ 200 Hz		
Recommended frequency		100 Hz		
Enclouser degree (Electrical wiring excepted)		IP65 - IP66 - IP69K		
Weight cast iron body		1,8 kg		
Weight aluminium body		1,3 kg		
	on, debugging parameters and set-up function connector AT04-6P, only (to be matched with A ⁻			
Foult monitoring system	Max current on safety output (pin 5)	50 mA		
Fault monitoring system	Reaction time a fault	500 ms		
Max current output signal for spool direction moviment		50 mA		
	From neutral position to max spool travel	110 ÷ 140 ms		
Reaction time (constant voltage)	From max spool travel to neutral	70 ÷ 90 ms		
		120 . 170		

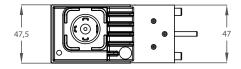
From max spool travel to neutral

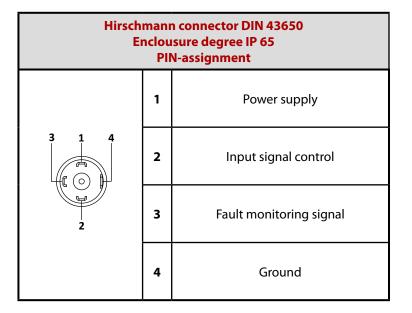

From neutral position to max spool travel

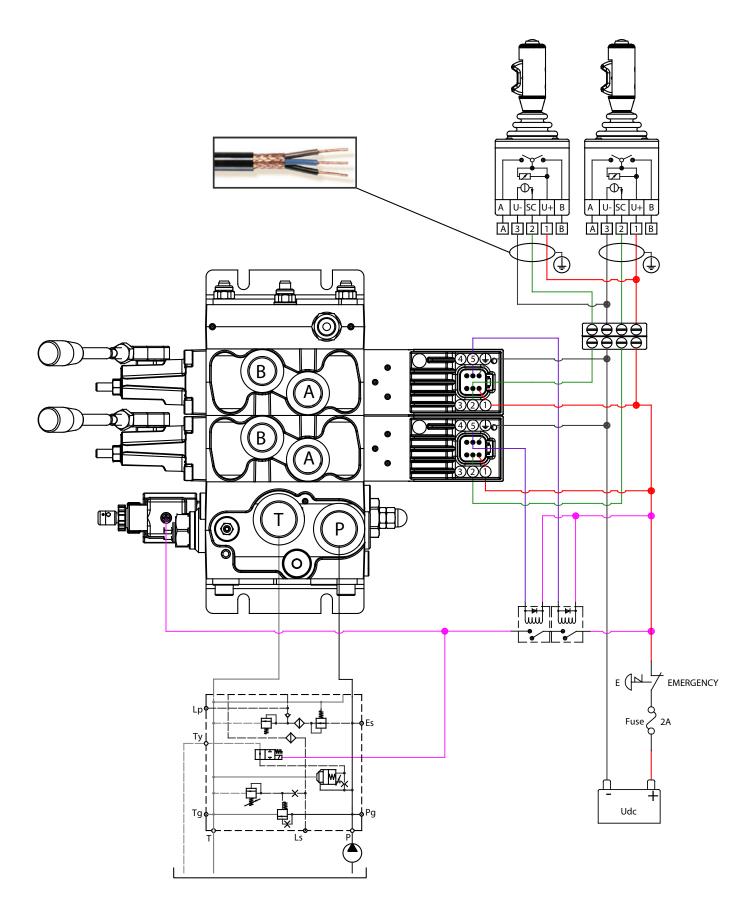

130 ÷ 170 ms


70 ÷ 90 ms

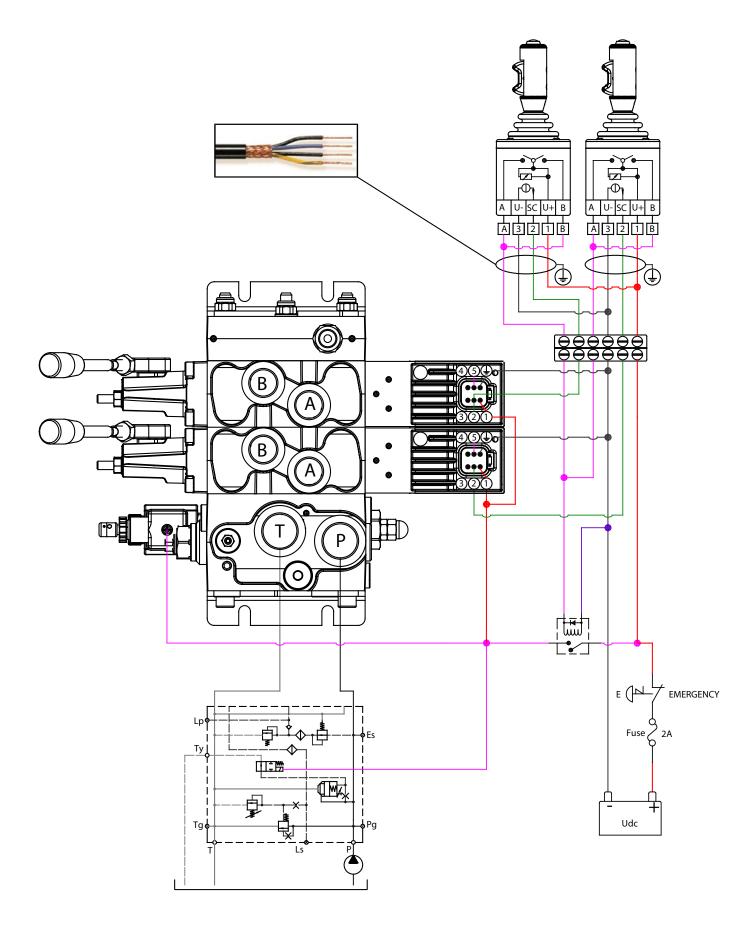



PDV74 - PEAC116 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 4 ÷ 20 mA - Electrical connectors

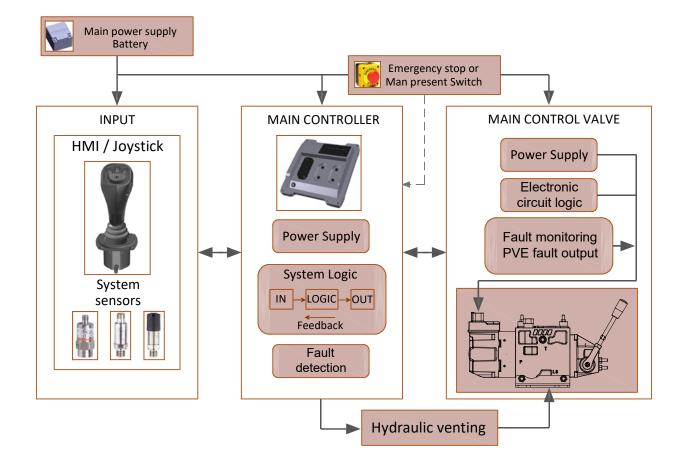




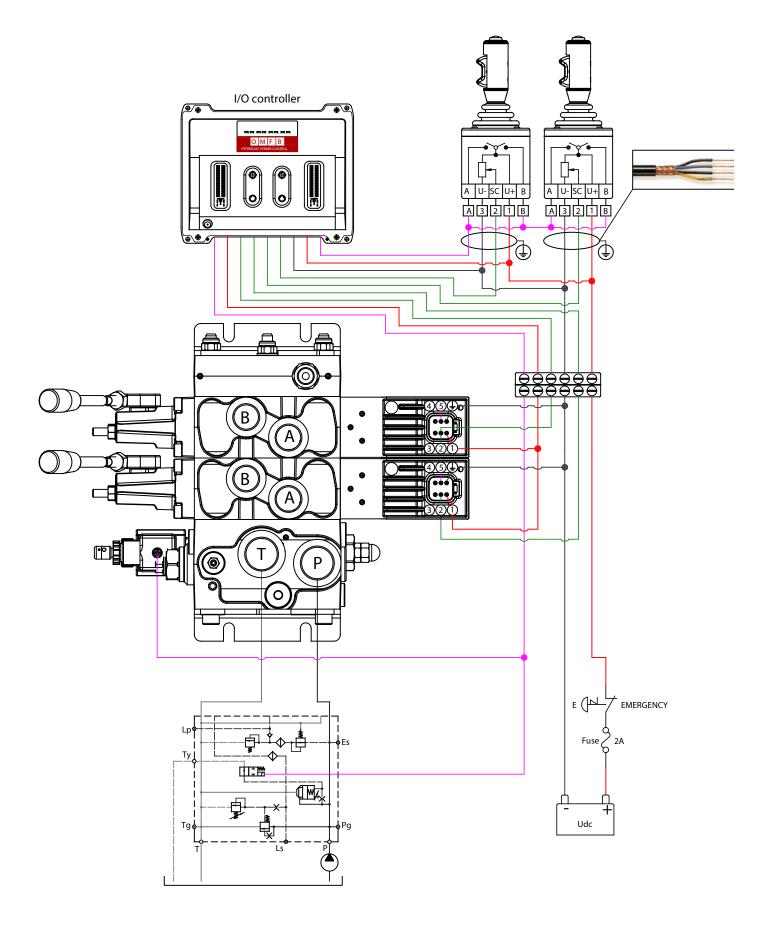
	Code numbers			
Connector version	Active version		Passive version	
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch AT04-6P	PEAC0126000	PEAC1126000	PEAC0116000	PEAC1116000
DIN 43650	PEAC0126200	PEAC1126200	PEAC0116200	PEAC1116200



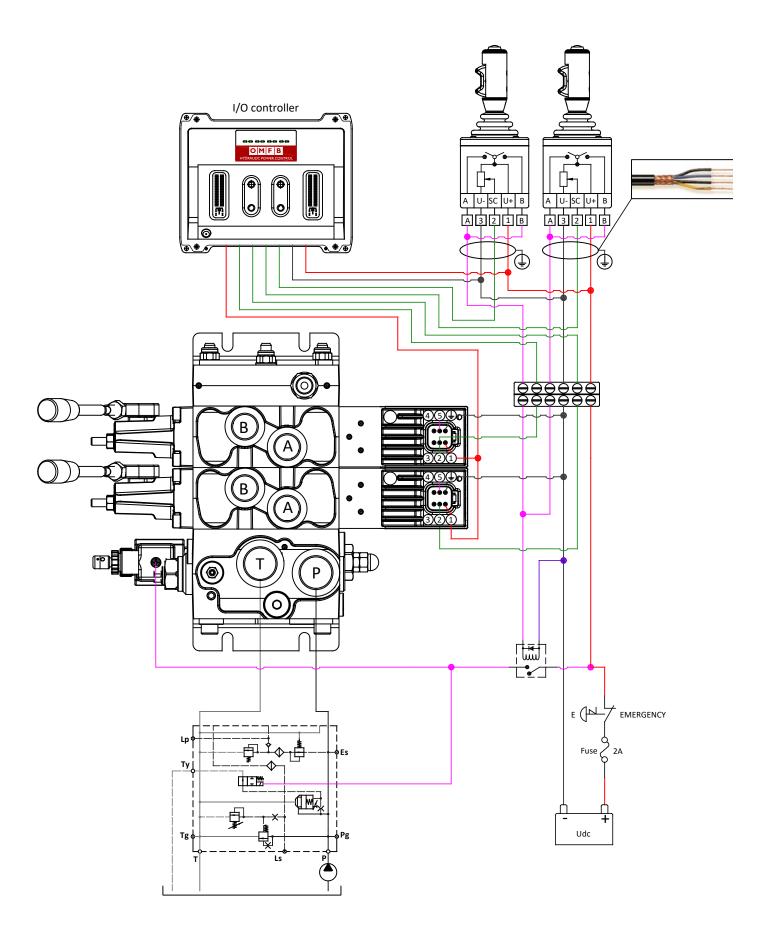
PDV74 - PEAC116 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal 4 ÷ 20 mA



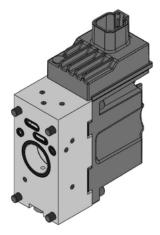
PDV74 - PEAC116 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Input signal control 4 ÷ 20 mA



PDV74 - PEAC116 Electro-hydraulic proportional actuation Closed loop spool control, high performance resolution Electrical block diagram for intelligent ring machine control

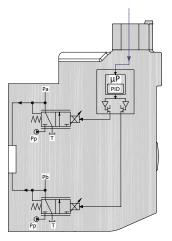


PDV74 - PEAC116 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller Input signal 4 ÷ 20 mA



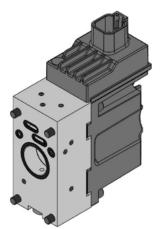
PDV74 - PEAC116 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 4 ÷ 20 mA

PDV74 - PEAC011 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0,5 Udc



PEAC011 is a proportional open loop spool actuation with integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.

The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

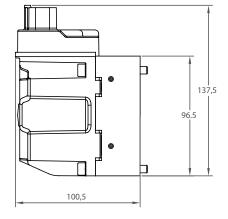

PEAC011 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

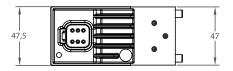
PEAC011 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

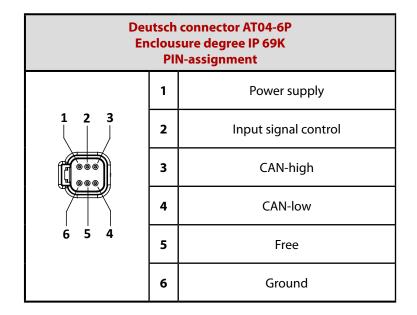
PDV74 - PEAC011 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0,5 Udc

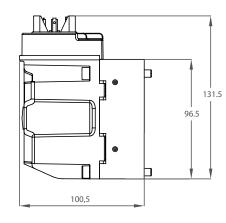
PEAC011 is defined by:

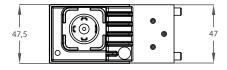
- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

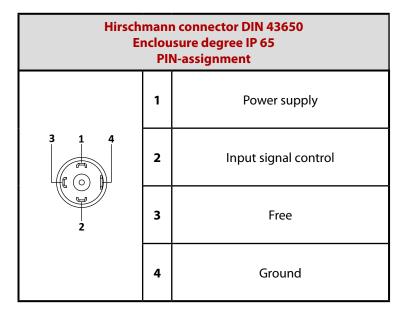

Rated supply voltage	10-30 Vdc
Max ripple	5%
Signal control	0,5 Udc
Range control signal	0,25 Udc to 0,75 Udc
Neutral spool position	0,5 Udc
Max threshold signal, A port	1 V
Max threshold signal, B port	1 V
Max current signal @ rated voltage	48 mA
Input capacitor	100 ηF
Signal control impedance	25 kΩ
Power consumption	8,7 W
Heat insulation	Class H (180°C)
Duty cycle	ED 100%
Max current consumption	650 mA
Current consumption in neutral position	80 mA
Coil impedance @ 20°C	8,9 Ω
Dither frequency	50-200 Hz
Recommended frequency	100 Hz
Enclouser degree (Electrical wiring excepted)	IP 66 - IP 67 - IP 69K
Weight cast iron body	1,8 kg
Weight aluminium body	1,3 kg

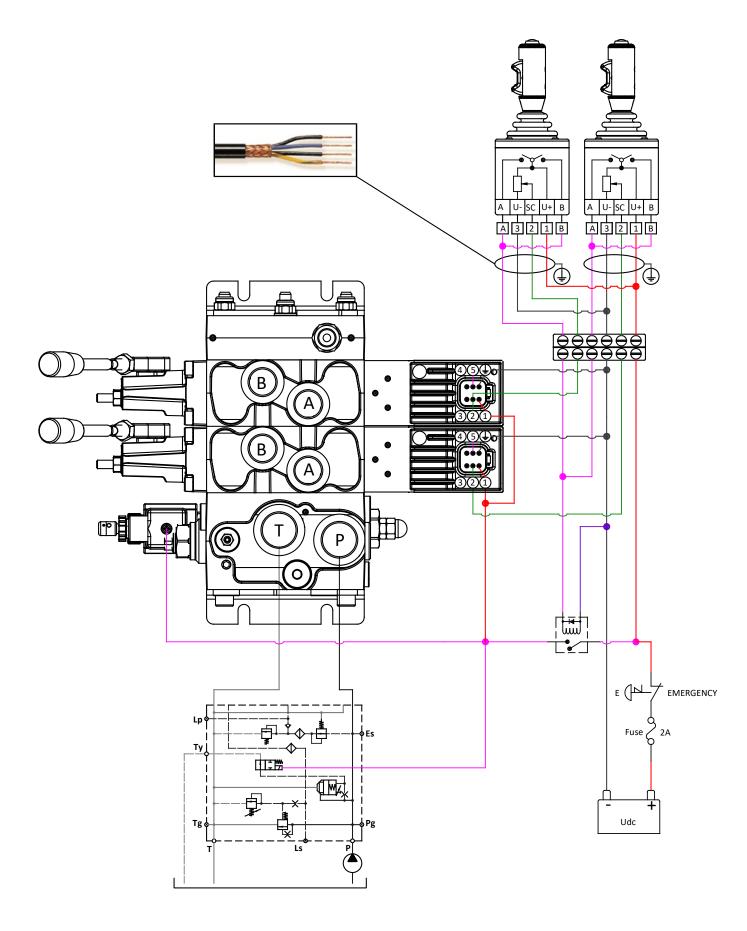

with Deutsch connector AT04-6P (to be matched with AT06-6S)


Poaction time (constant voltage)	From neutral position to max spool travel	110 - 140 ms
Reaction time (constant voltage)	From max spool travel to neutral	70 - 90 ms
Poaction time (neutral switch)	From neutral position to max spool travel	130 - 170 ms
Reaction time (neutral switch)	From max spool travel to neutral	70 - 90 ms

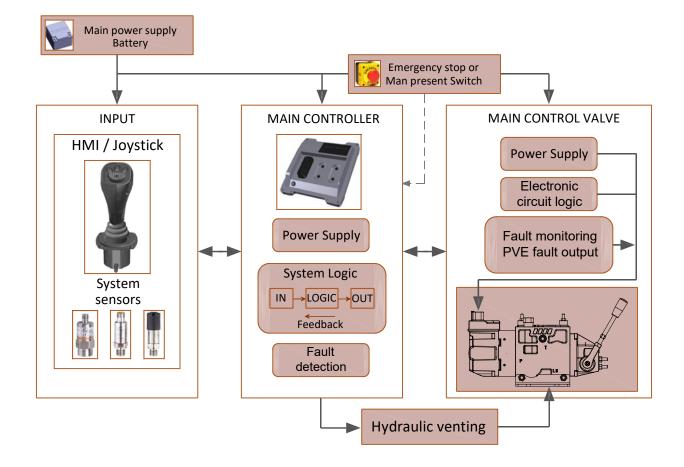



PDV74 - PEAC011 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal 0,5 Udc - Electrical connectors

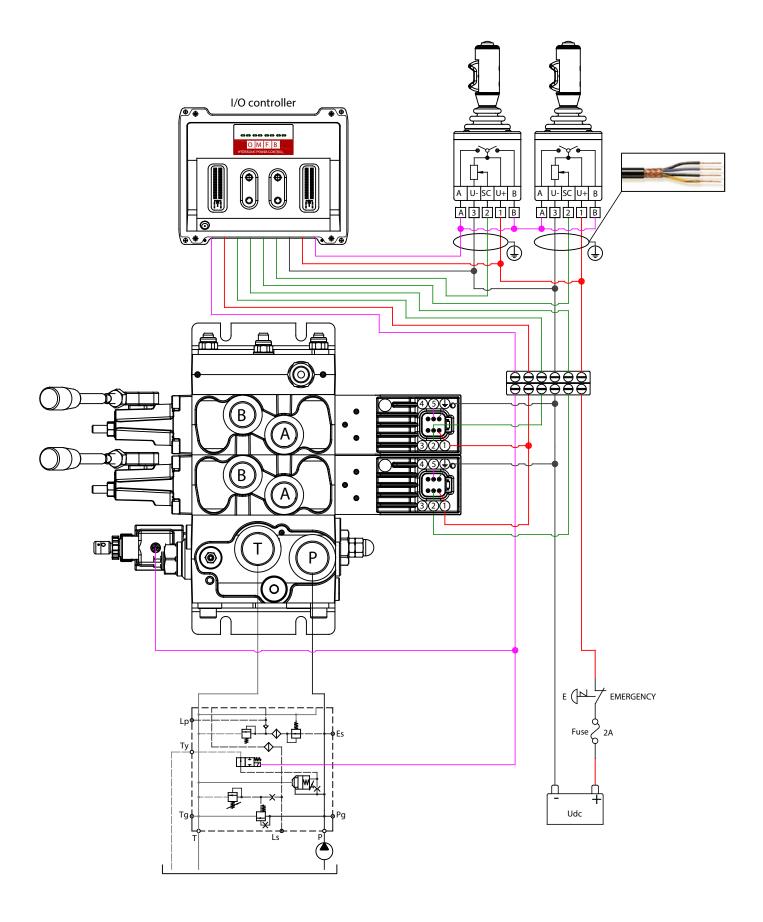




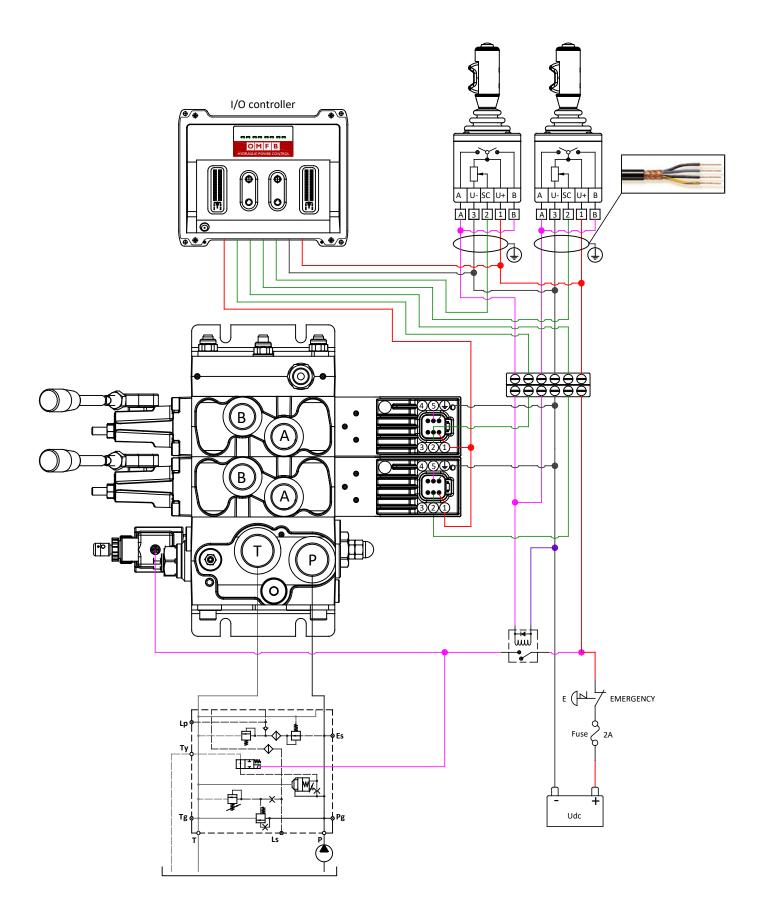
	Code numbers			
Connector version	nector version Active version Passive version		version	
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch AT04-6P	PEAC0021000	PEAC1021000	PEAC0011000	PEAC1011000
DIN 43650	PEAC0021200	PEAC1021200	PEAC0011200	PEAC1011200



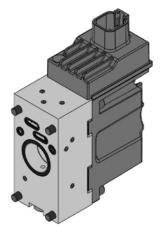
PDV74 - PEAC011 Electro-hydraulic proportional actuation **Open loop spool control**, high performance resolution **Input signal control 0,5 Udc**



PDV74 - PEAC011 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Electrical block diagram for intelligent ring machine control

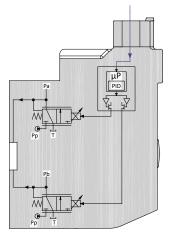


PDV74 - PEAC011 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc



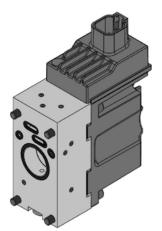
PDV74 - PEAC011 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0,5 Udc

PDV74 - PEAC012 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0 ÷ 10 V



PEAC012 is a proportional open loop spool actuation with integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.

The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

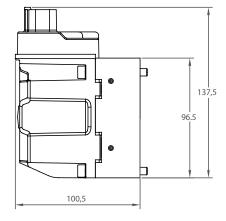

PEAC012 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

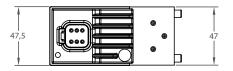
PEAC012 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

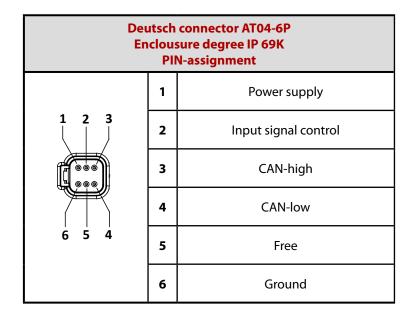
PDV74 - PEAC012 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal control 0 ÷ 10 V

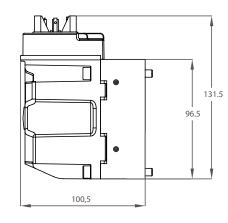
PEAC012 is defined by:

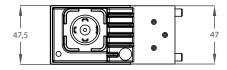
- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

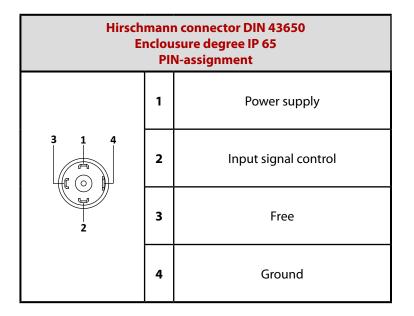

PEAC012 Technical data					
Rated supply voltage	10-30 Vdc				
Max ripple	5%				
Signal control	0-10 V				
Range control signal	2,5 V to 7,5 V				
Neutral spool position	5 V				
Max threshold signal, A port	1 V				
Max threshold signal, B port	1 V				
Max current signal @ rated voltage	48 mA				
Input capacitor	100 ηF				
Signal control impedance	25 kΩ				
Power consumption	8,7 W				
Heat insulation	Class H (180°C)				
Duty cycle	ED 100%				
Max current consumption	650 mA				
Current consumption in neutral position	80 mA				
Coil impedance @ 20°C	8,9 Ω				
Dither frequency	50-200 Hz				
Recommended frequency	100 Hz				
Enclouser degree (Electrical wiring excepted)	IP 66 - IP 67 - IP 69K				
Weight cast iron body	1,8 kg				
Weight aluminium body	1,3 kg				

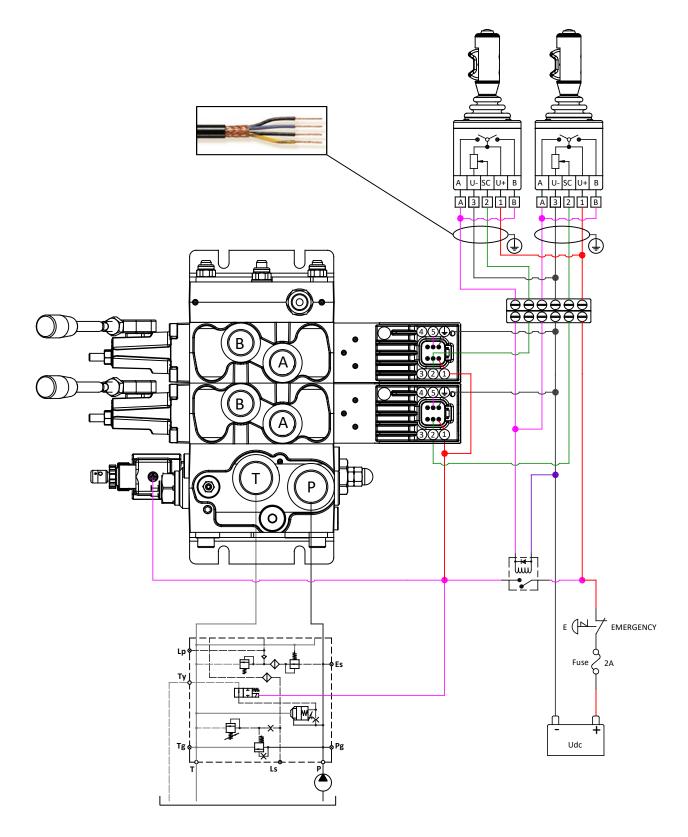

with Deutsch connector AT04-6P (to be matched with AT06-6S)


Reaction time (constant voltage)	From neutral position to max spool travel	110 - 140 ms
Reaction time (constant voltage)	From max spool travel to neutral	70 - 90 ms
Population time (neutral switch)	From neutral position to max spool travel	130 - 170 ms
Reaction time (neutral switch)	From max spool travel to neutral	70 - 90 ms

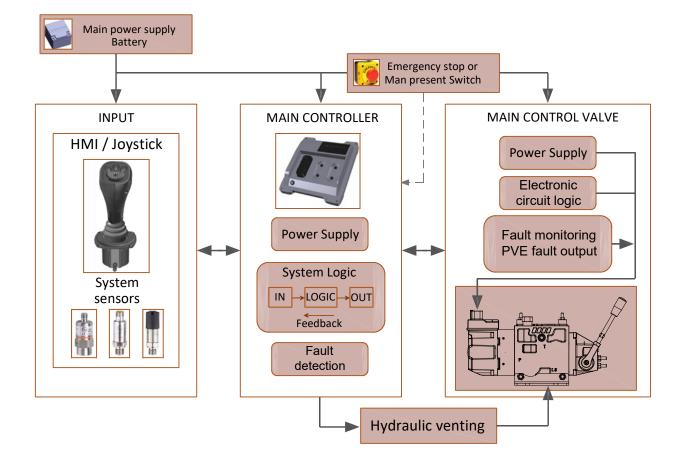



PDV74 - PEAC012 Electro-hydraulic proportional actuation Open loop spool control, high performance resolution Input signal 0 ÷ 10 V - Electrical connectors

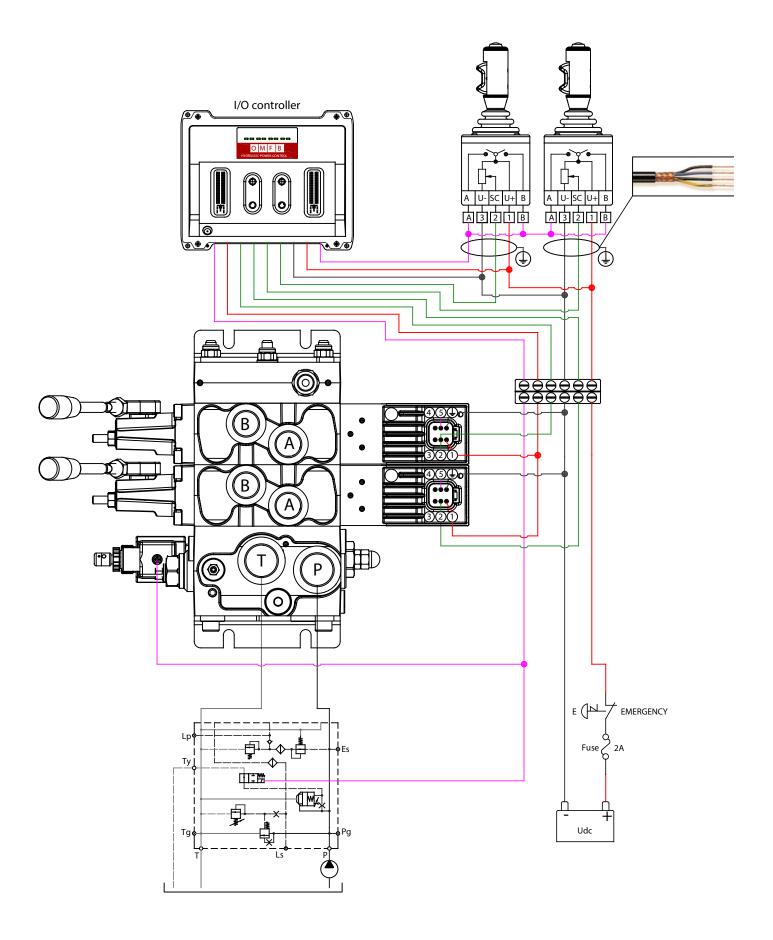




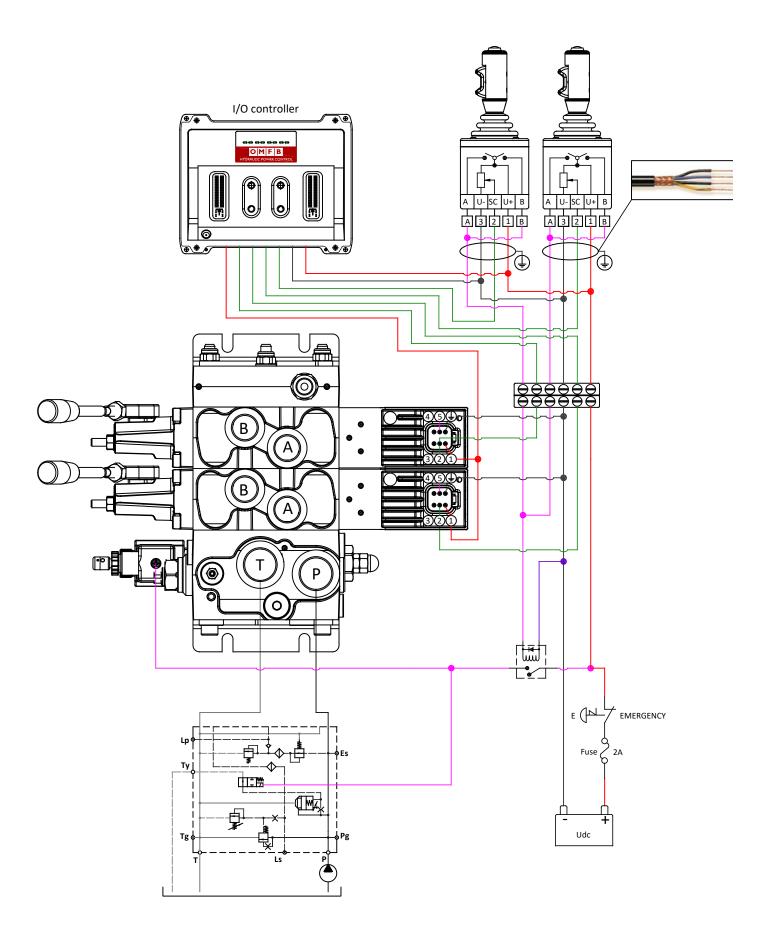
		Code n	umbers	
Connector version	r version Active version Passive		e version	
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch AT04-6P	PEAC0022000	PEAC1022000	PEAC0012000	PEAC1012000
DIN 43650	PEAC0022200	PEAC1022200	PEAC0012200	PEAC1012200



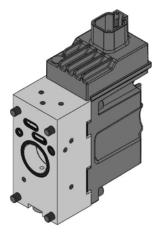
PDV74 - PEAC012 Electro-hydraulic proportional actuation. Open loop spool control, high performance resolution Input signal control 0 ÷ 10 V



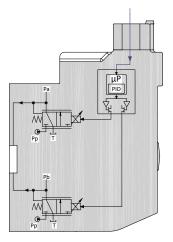
PDV74 - PEAC012 Electro-hydraulic proportional actuation. Open loop spool control, high performance resolution Electrical block diagram for intelligent ring machine control



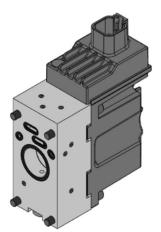
PDV74 - PEAC012 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V



PDV74 - PEAC012 Electro-hydraulic proportional actuation Electrical wiring diagram with OMFB I/O controller Input signal 0 ÷ 10 V

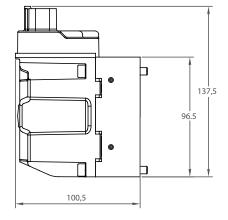


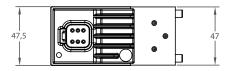
PEAC016 is a proportional open loop spool actuation with integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.

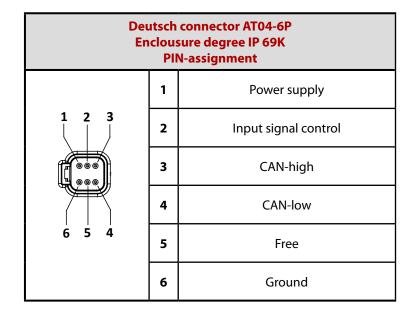

The input signal by means of the PCB and the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

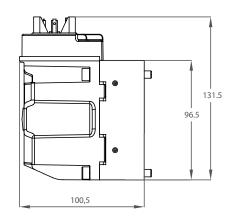
PEAC016 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

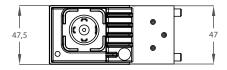
PEAC016 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

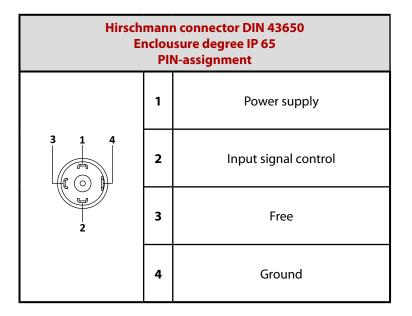

PEAC016 is defined by:

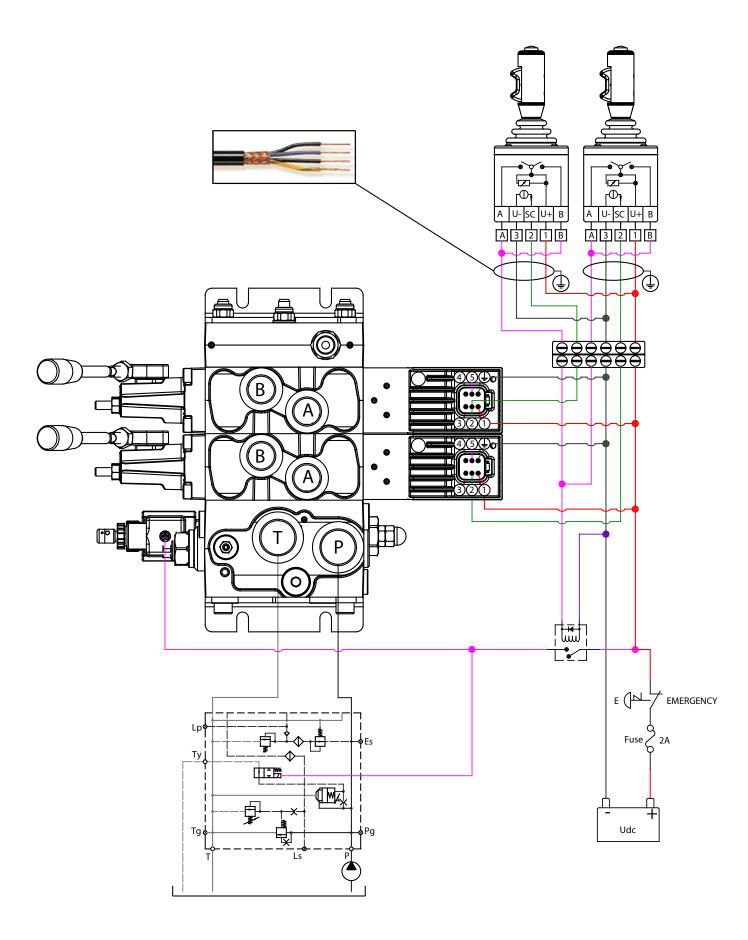

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design


PEAC016 Technical data					
Rated supply voltage		10-30 Vdc			
Max ripple		5%			
Signal control		4-20 mA			
Range control signal		4 mA to 20 mA			
Neutral spool position		12 mA			
Max threshold signal, A port		1,5 mA			
Max threshold signal, B port		1,5 mA			
Input capacitor		100 ηF			
Input impedance		220 Ω			
Power consumption		8,7 W			
Heat insulation		Class H (180°C)			
Duty cycle		ED 100%			
Max current consumption		650 mA			
Current consumption in neutral position		80 mA			
Max current start spool travel		140 mA			
Max current end spool travel		450 mA			
Coil impedance @ 20°C		8,9 Ω			
Signal control impedance		50 ΚΩ			
Dither frequency		50-200 Hz			
Recommended frequency		100 Hz			
Enclouser degree (El	ectrical wiring excepted)	IP65 - IP66 - IP69K			
	n, debugging parameters and set-up functio onnector AT04-6P, only (to be matched with A				
	From neutral position to max spool travel	110 - 140 ms			
Reaction time (constant voltage)	From max spool travel to neutral	70 - 90 ms			
	From neutral position to max spool travel	130 - 170 ms			
Reaction time (neutral switch)	From max spool travel to neutral	70 - 90 ms			

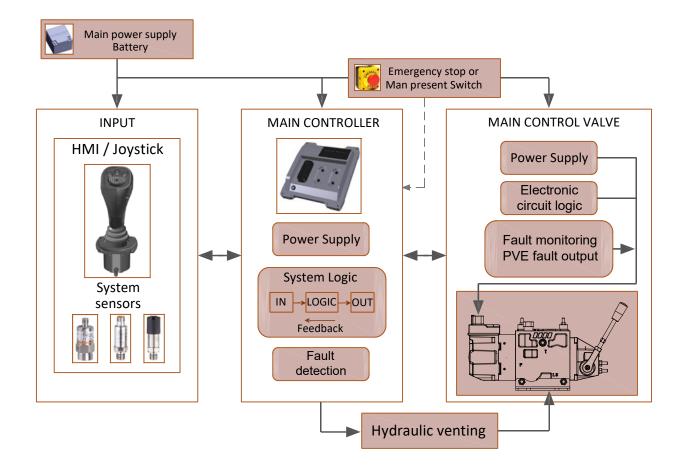



PDV74 - PEAC016 Electro-hydraulic proportional actuation. Input signal control 4 ÷ 20 mA Electrical connectors

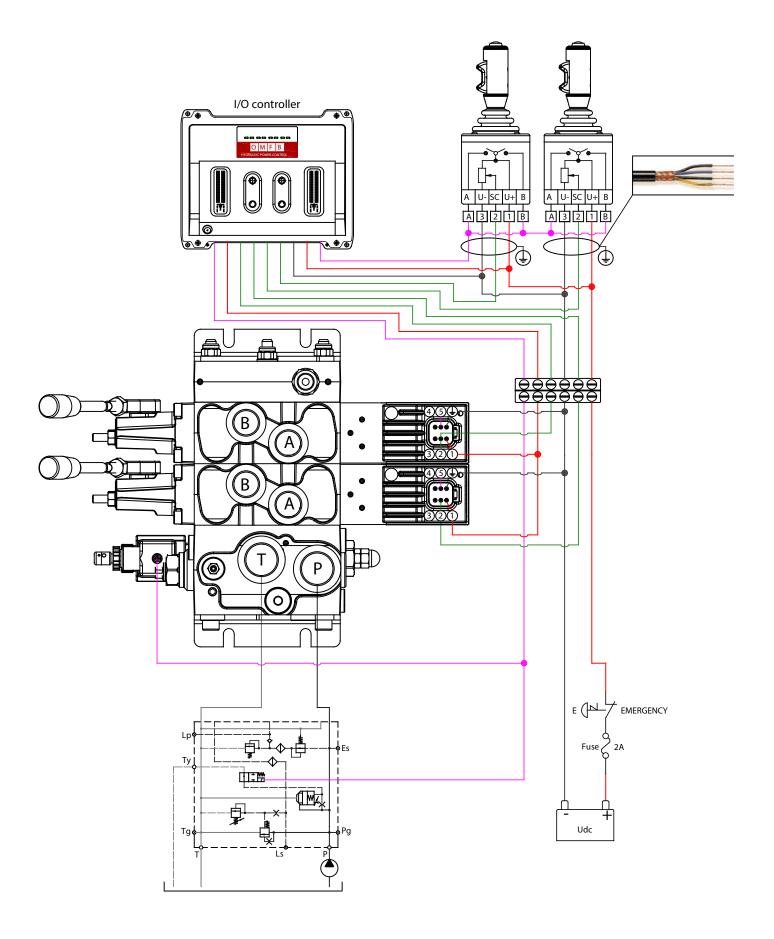




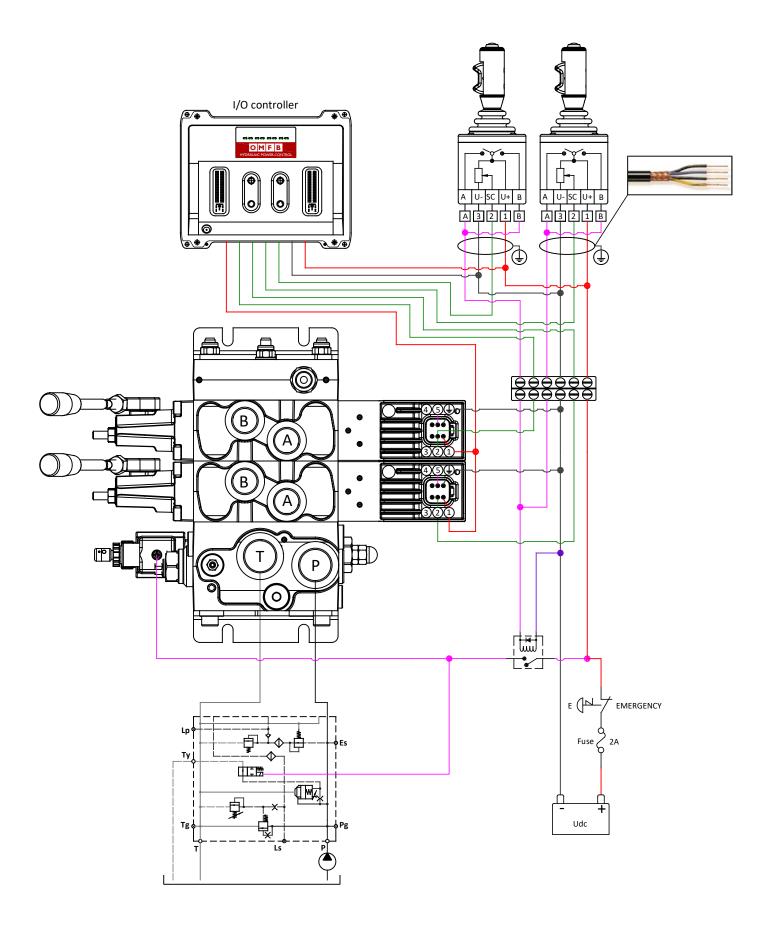
	Code numbers			
Connector version	ector version Active version Passive version		version	
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch AT04-6P	PEAC0026000	PEAC1026000	PEAC0016000	PEAC1016000
DIN 43650	PEAC0026200	PEAC1026200	PEAC0016200	PEAC1016200



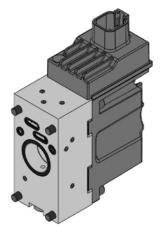
PDV74 - PEAC016 Electro-hydraulic proportional actuation. Input signal control 4-20 mA Electrical wiring



PDV74 - PEAC016 Electro-hydraulic proportional actuation Open loop spool control Current input signal 4-20 mA

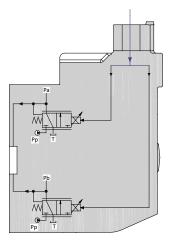


PDV74 - PEAC016 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller Current input signal 4 ÷ 20 mA



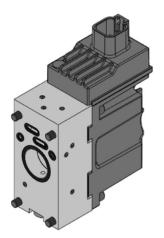
PDV74 - PEAC016 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller Current input signal 4 ÷ 20 mA

PDV74 - PEAD1 Electro-hydraulic proportional actuation Open loop spool control - Current input signal for PWM or supply voltage for ON/OFF control



PEAD1 is a proportional open loop spool actuation without integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.

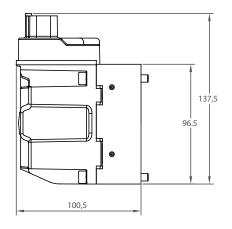
The input signal by means of the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.

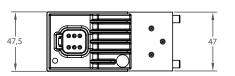

PEAD1 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

PEAD1 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

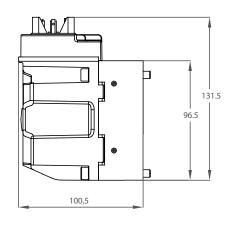
OMFB HYDRAULIC POWER CONTROL

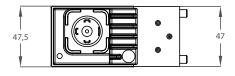
PDV74 - PEAD1 Electro-hydraulic proportional actuation Open loop spool control - Current input signal for PWM or supply voltage for ON/OFF control

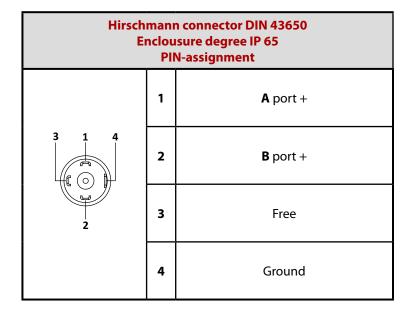

PEAD1 is defined by:

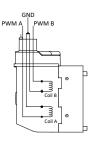

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

PEAD1 Technical data					
Supply voltage		12 Vdc	24 Vdc		
Voltage range		10-16 V	20-30 V		
Max ripple		5%	5%		
Current consuption at rated voltage		750 mA @ 12 Vdc	400 mA @ 24 Vdc		
Power consumption		9 W	9,6 W		
R @ 20°C		8,9 Ω	35 Ω		
Start spool travel		220 mA	140 mA		
End spool travel flow control		650 mA	350 mA		
Max spool flow in pre-floating position	n	650 mA	350 mA		
Spool floating position		750 mA	400 mA		
Heat insulation		Class H	(180°C)		
Oil temperature (Recommend	20 ÷ 60 °C				
Oil temperature (Min)	-30 °C				
Oil temperature (Max)	80 °C				
Ambient temperature		-30 ÷	60 °C		
PWM frequency	50 ÷ 2	200 Hz			
Best frequency		100) Hz		
Duty cycle		1004	% ED		
Plug connector		6 pins Deutscl	h or 4 pins DIN		
Enclouser degree	(Electrical wiring excepted)	ІР69К			
Weight cast iron body		1, 8 kg			
Weight Aluminium body		1,3	kg		
Max current output signal for spool d	50	mA			
Poaction time (constant valte co)	From neutral position to max spool travel	110 - 1	140 ms		
Reaction time (constant voltage)	From max spool travel to neutral	70 - 9	90 ms		
Postion time (neutral switch)	From neutral position to max spool travel	130 - 170 ms			
Reaction time (neutral switch)	From max spool travel to neutral	70 - 9	90 ms		

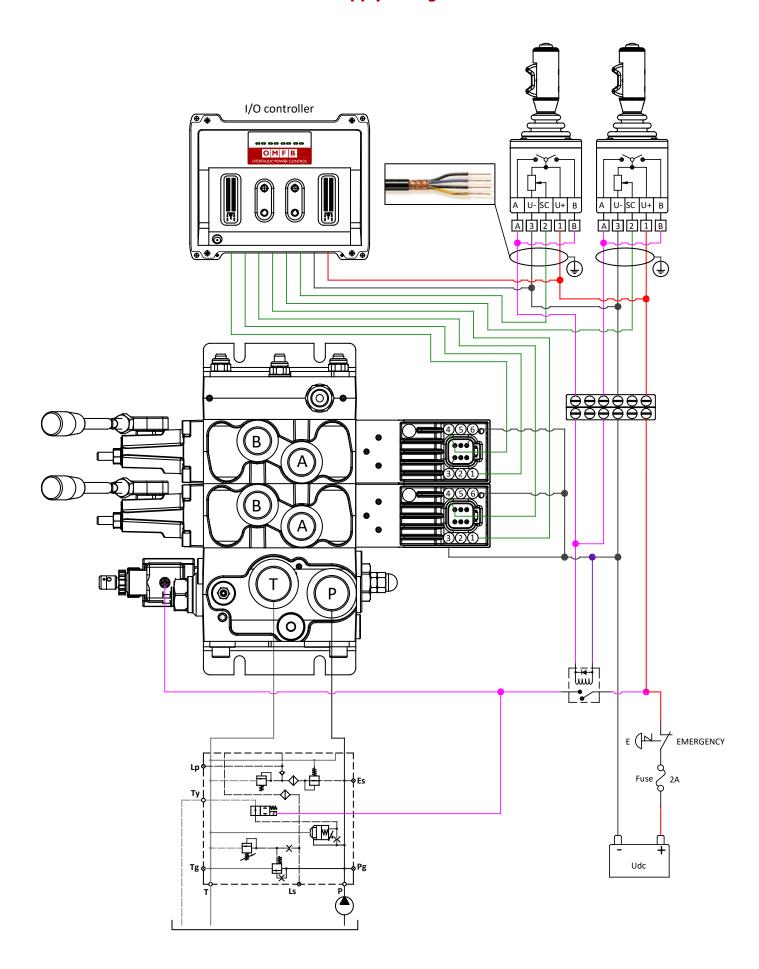



PDV74 - PEAD1 Electro-hydraulic proportional actuation Open loop spool control - Current input signal for PWM or supply voltage for ON/OFF control - Electrical connectors

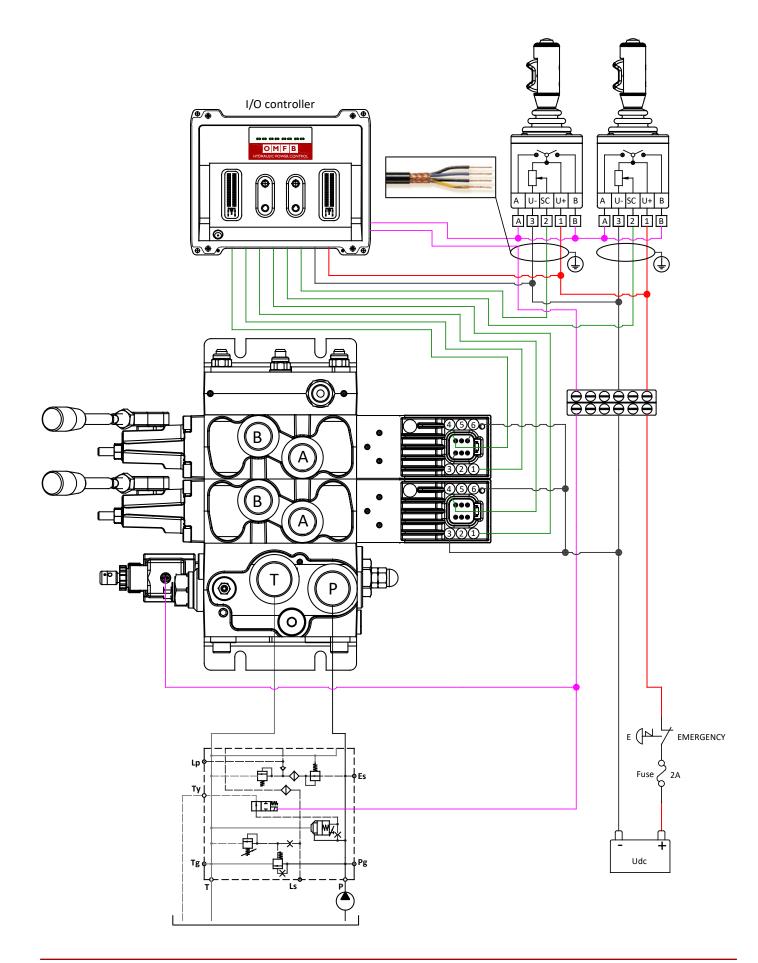




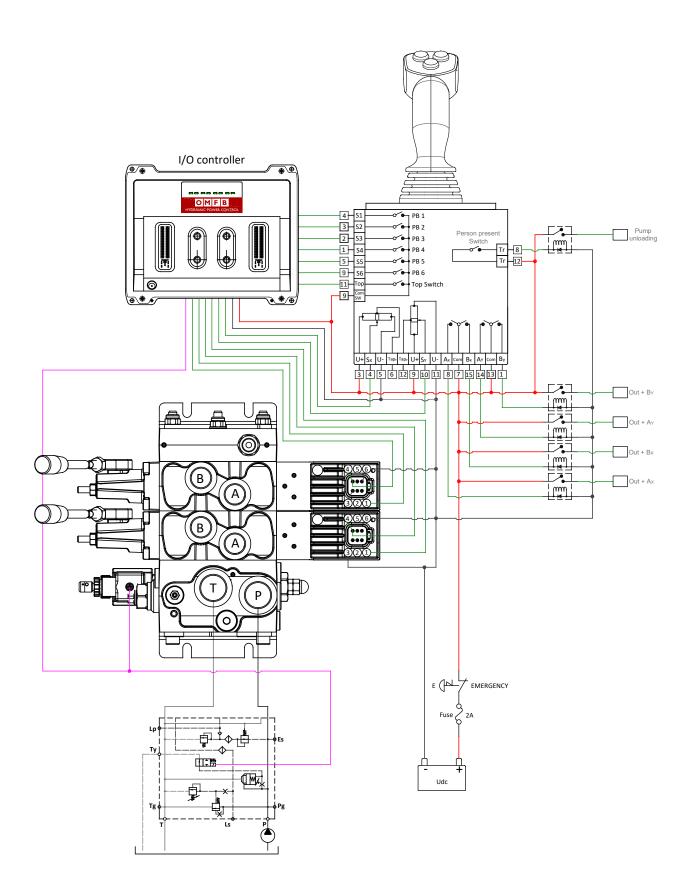
Deutsch connector AT04-6P Enclousure degree IP 69K PIN-assignment		
	1	A port +
1 2 3	2	Free
	3	A port -
	4	B port +
654	5	Free
	6	B port -



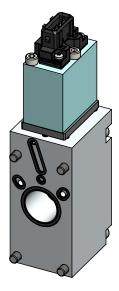
	Code numbers			
Connector version	12 V		24	ŧV
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body
Deutsch AT04-6P	PEAD0100000	PEAD1100000	PEAD0200000	PEAD1200000
DIN 43650	PEAD0120000	PEAD1120000	PEAD0220000	PEAD1220000



PDV74 - PEAD1 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control

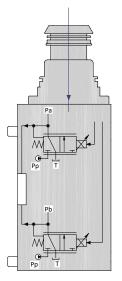


PDV74 - PEAD1 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control



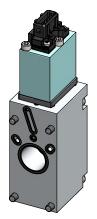
PDV74 - PEAD1 Electro-hydraulic proportional actuation. Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control

PDV74 - PEAP1 Electro-hydraulic proportional actuation Open loop spool control - Current input signal for PWM or supply voltage for ON/OFF control



PEAP1 is a proportional open loop spool actuation without integrated electronics that operates the main spool movement according to an electrical signal coming from a remote control.

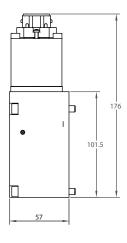
The input signal by means of the two proportional pressure reducing valves, determines the level of the pilot pressure which moves the main spool.


PEAP1 does not have neither the transducer spool position control nor fault monitoring system, this means that any forces which override the pilot pressure spool forces, may chenge the spool position with no error signal, and the safety of the whole system is left to the operator's visual control, only.

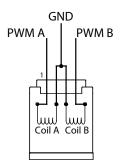
PEAP1 is recommended where a simple proportional control is required, and where hysteresis and reaction time are not so critical.

OMFB HYDRAULIC POWER CONTROL

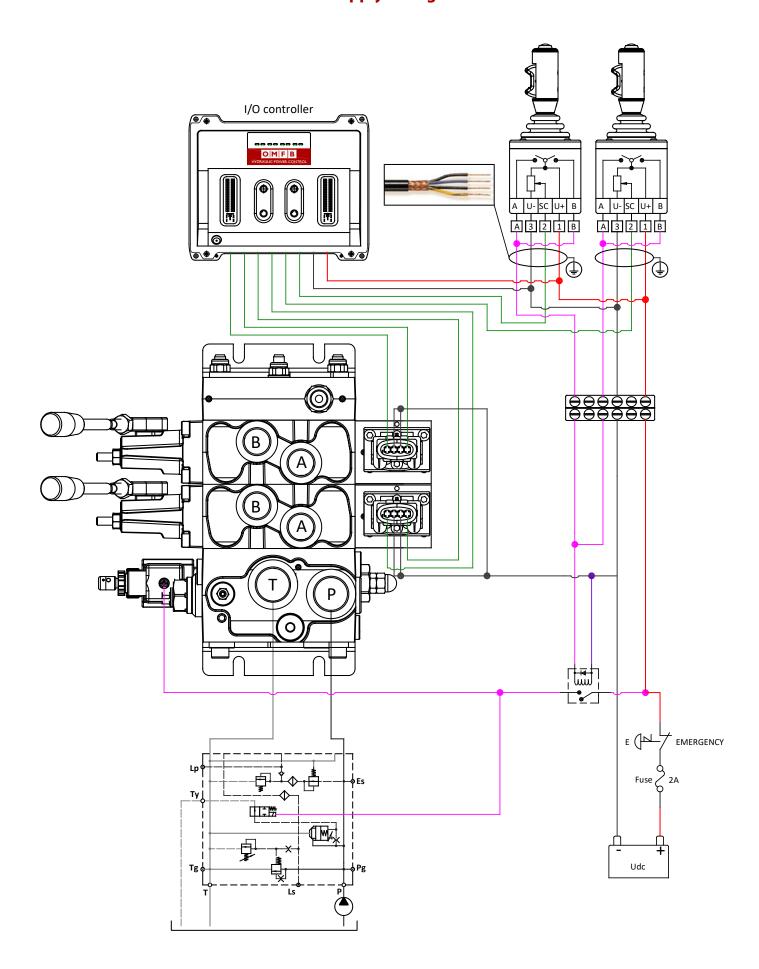
PDV74 - PEAP1 Electro-hydraulic proportional actuation Open loop spool control - Current input signal for PWM or supply voltage for ON/OFF control


PEAP1 is defined by:

- High spool control accuracy
- EMC performace according to Directive 2014/30/UE
- Quick reaction time
- Integrated PWM/Pulse Width Modulation
- Low electrical power
- Robust and reliable design

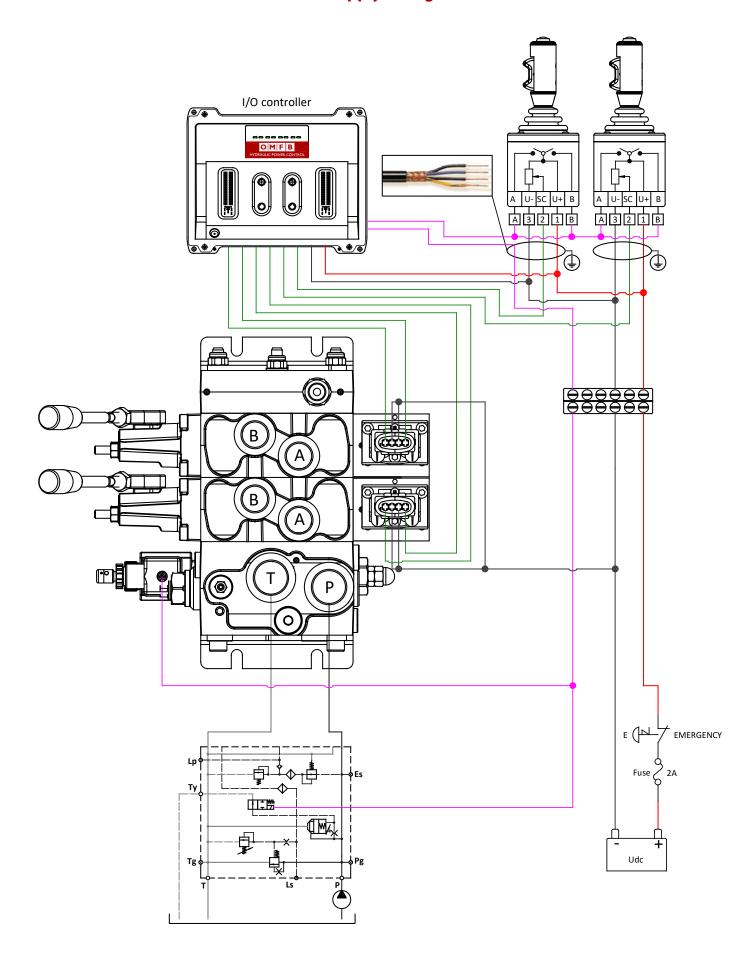

PEAP1 Technical data					
Supply voltage		12 Vdc	24 Vdc		
Voltage range		10-16 V	20-30 V		
Max ripple		5%	5%		
Current consuption at rated voltage	ge	1330 mA @ 12 Vdc	630 mA @ 24 Vdc		
Power consumption		23 W	21 W		
R @ 20°C		6,3 Ω	27 Ω		
Start spool travel		220 mA	140 mA		
End spool travel flow control		1330 mA	630 mA		
Max spool flow in pre-floating pos	sition	1330 mA	630 mA		
Spool floating position		750 mA	400 mA		
Heat insulation		Class H (180°C)			
Oil temperature (Recomme	ended)	-20 ÷ 60 °C			
Oil temperature (Min)		-30	٥°C		
Oil temperature (Max)		80	°C		
Ambient temperature		-30 ÷	60 °C		
PWM frequency		50 ÷ 2	200 Hz		
Best frequency		100 Hz			
Duty cycle		100% ED			
Plug connector		Amp Junior Power Timer 4 pins			
Enclouser degree (Electrical wiring excepted)		ІР69К			
Max current output signal for spool direction moviment		50 mA			
Beastion time (constant voltage) From neutral position to max spool travel		110 - 140 ms			
Reaction time (constant voltage) From max spool travel to neutral		70 - 90 ms			
From neutral position to max spool travel		130 - 170 ms			
Reaction time (neutral switch)	From max spool travel to neutral	70 - 9	90 ms		

PDV74 - PEAP1 Electro-hydraulic proportional actuation Input signal control PWM - Current input signal for PWM or supply voltage for ON/OFF control - Electrical connector

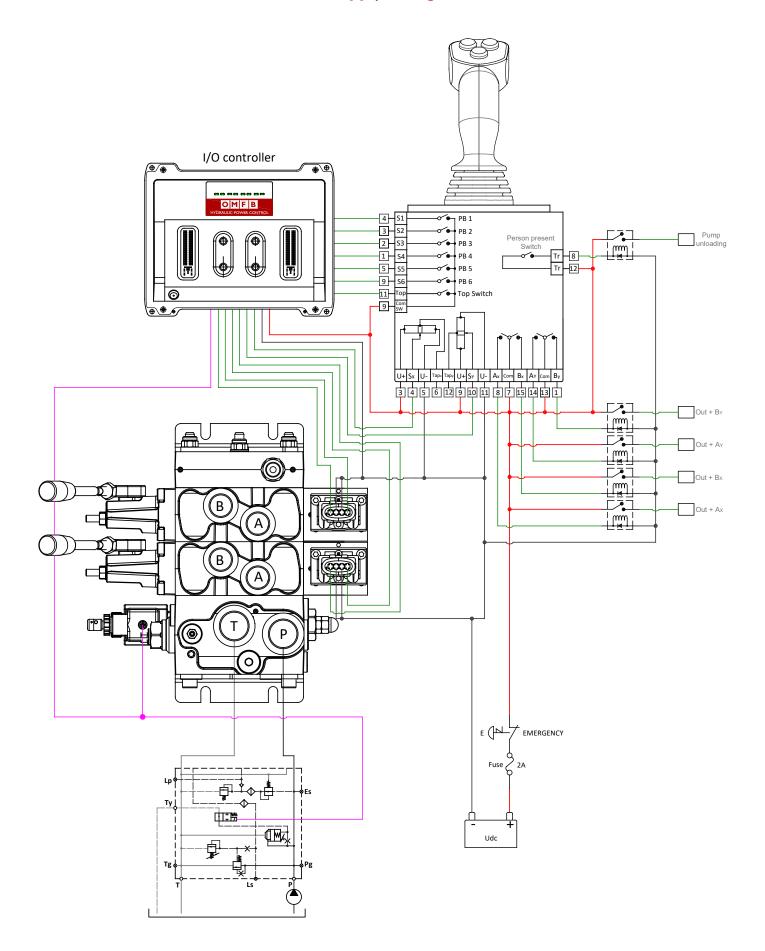


Amp Junior Power Timer 4 pin connector Enclousure degree IP 65 PIN-assignment				
	1	A port +		
	2	A port -		
	3	B port -		
	4	B port +		

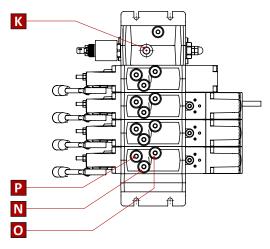
	Code numbers					
Connector version	12	2 V	24 V			
	Cast-iron body	Aluminium body	Cast-iron body	Aluminium body		
AMP Junior timer 4 Pin	PEAP0110000	PEAP1110000	PEAP0210000	PEAP1210000		

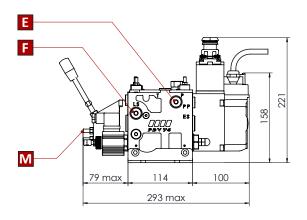


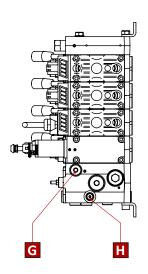
PDV74 - PEAP1 Electro-hydraulic proportional actuation Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control

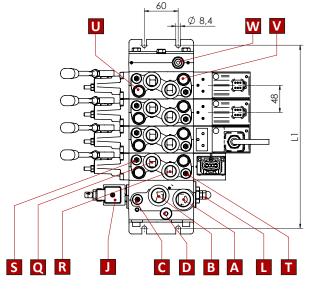


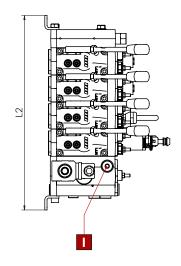
PDV74 - PEAP1 Electro-hydraulic proportional actuation Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control


PDV74 - PEAP1 Electro-hydraulic proportional actuation Electrical wiring with OMFB I/O controller - Current input signal for PWM or supply voltage for ON/OFF control

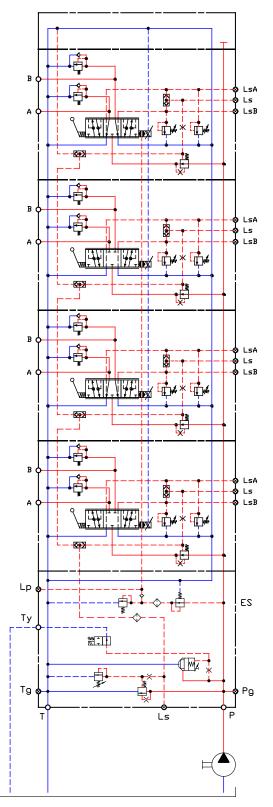




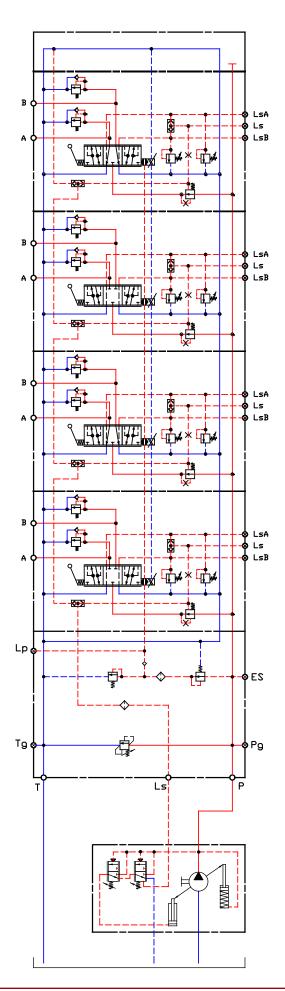



PDV74 Proportional valve Overall dimensions drawing with standard inlet section Right assembly version

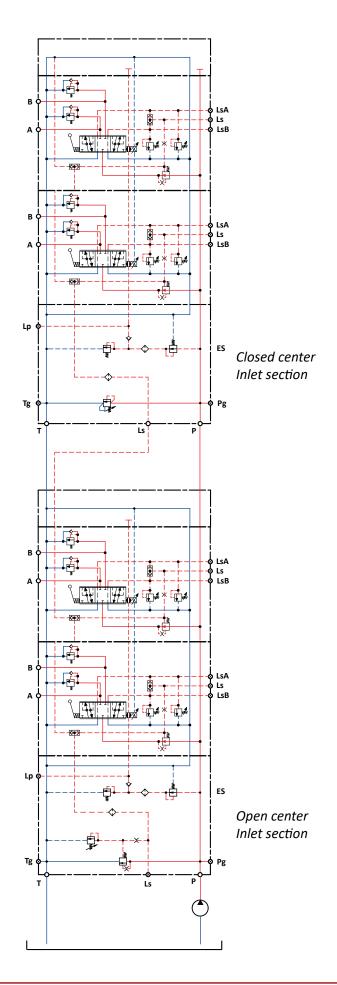
PDW		1	2	3	4	5	6	7	8	9	10	11	12
	mm	180	228	276	324	372	420	468	516	564	612	660	708
L1	in	7,09	8,98	10,87	12,76	14,65	16,54	18,43	20,31	22,20	24,09	25,98	27,87
	mm	200	248	296	344	392	440	488	536	584	632	680	728
L2	in	7,87	9,76	11,65	13,54	15,43	17,32	19,21	21,10	22,99	24,88	26,77	28,66


99740000PDV AA 02/02/2021

A = Pump side port - 3/4″ BSPP - 17 mm deep [1 ¼6 in 12 UN-2B - 0,67 in deep]
B = T port - 3/4″ BSPP - 17 mm deep [1 ¼6 in 12 UN - 2B - 0,67 in deep]
C = Main pressure relief valve
D = Main pressure reducing valve
E = Pump pressure gauge connection - 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
F = LS connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
G = External pilot pressure supply connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
H = External feeding main pressure reducing valve 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]
Tank pressure gauge connection 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]
I = Electrical LS/pump unloading function
K = Pump unloading drain port, 1/4" BSPP - 12 mm deep [7/6 in-20 UNF - 2B - 0,47 in deep]
L = Pump unloading mechanical override
M = A-B port mechanical flow adjustment
O = LSB ► remote pilot pressure connection 1/4" BSPP - 12 mm deep [⅔ in-20 UNF - 2B - 0,47 in deep]
$\mathbf{P} = \mathrm{LS}$
Q = Port A 1/2" BSPP - 17 mm deep [% in-14 UNF-2B - 0,67 in deep]
R = Port B $\int \frac{1}{2} \frac{1}{$
s = Ls _B pilot pressure relief valve
$T = L_{SA}$
U = Shock/suction valve B port
V = Shock/suction valve A port
W = External drain connection electric actuations - 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]

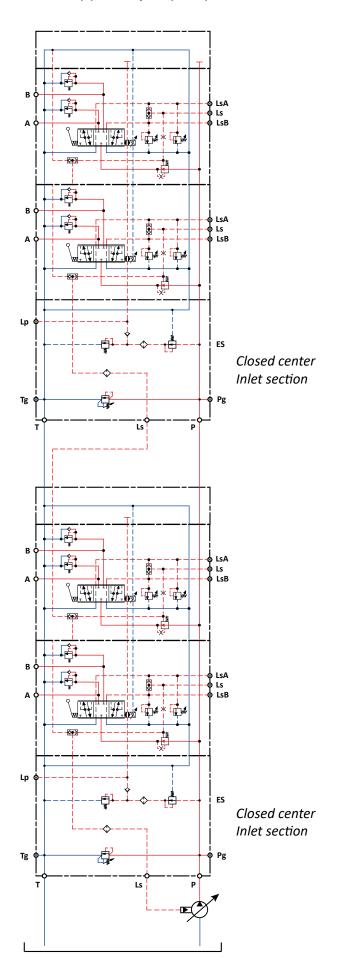

PDV74 Proportional valve Hydraulic diagram

PDV74 with open centre inlet section (fixed displacement pump), pump unloading system, pilot oil supply for electro-hydraulic spool actuations

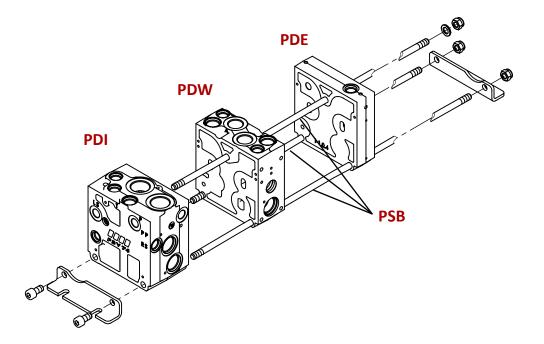


PDV74 Proportional valve Hydraulic diagram

PDV74 with closed centre inlet section (variable displacement pump), pilot oil supply for electro-hydraulic spool actuations

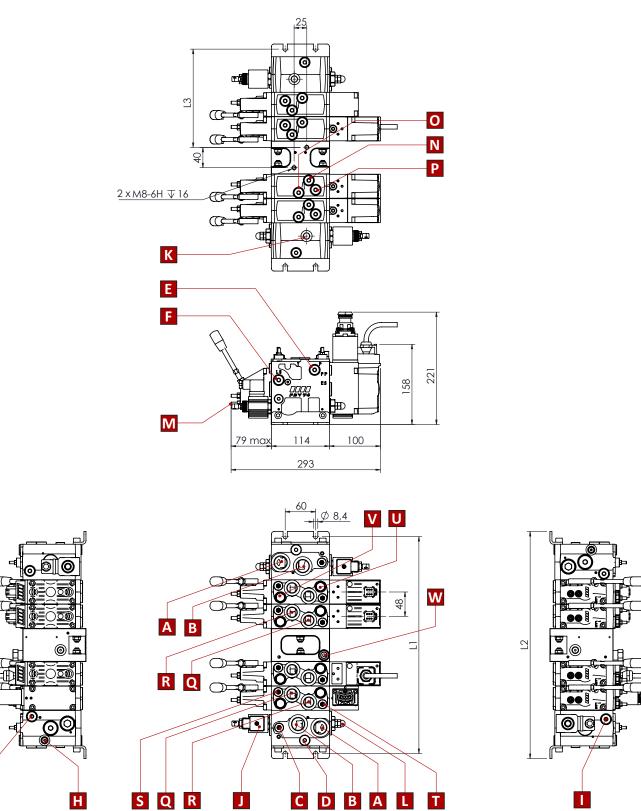

PDV74 Proportional Valve **PDV** _____ supplied by a fixed displacement pump

OMFB HYDRAULIC POWER CONTROL



PDV74 Proportional Valve **PDV** - ____supplied by Ls pump

PDV74 Proportional Valve **PSB** Stay bolt kit - Standard configuration



PDW	Code numbers	Tightening torque
1	PSB700110000	
2	PSB700210000	
3	PSB700310000	
4	PSB700410000	
5	PSB700510000	25 ± 2 Nm
6	PSB700610000	220 ±18 lb*in
7	PSB700710000	
8	PSB700810000	
9	PSB700910000	
10	PSB701010000	

PDV74 Proportional valve Overall dimensions drawing with double inlet section and MID end

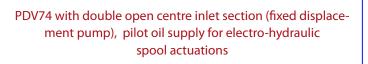
DHD

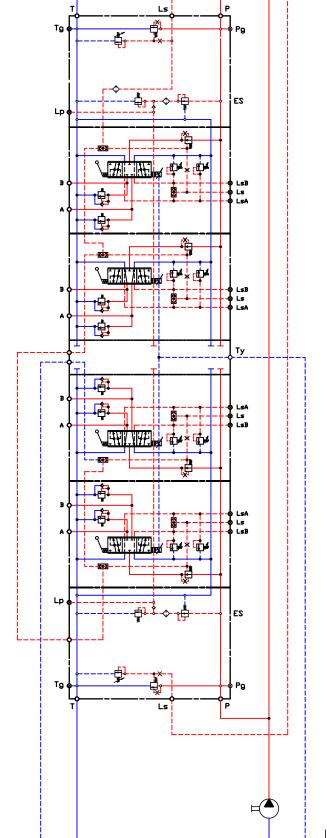
PDW		2	3	4	5	6	7	8	9	10	11	12
11	mm	331	379	427	475	523	571	619	667	715	763	811
L1	in	13,03	14,92	16,81	18,70	20,59	22,48	24,37	26,26	28,15	30,04	31,93
	mm	351	399	447	495	543	591	639	687	735	783	831
L2	in	13,82	15,71	17,60	19,49	21,38	23,27	25,16	27,05	28,94	30,83	32,72

 $(\top$

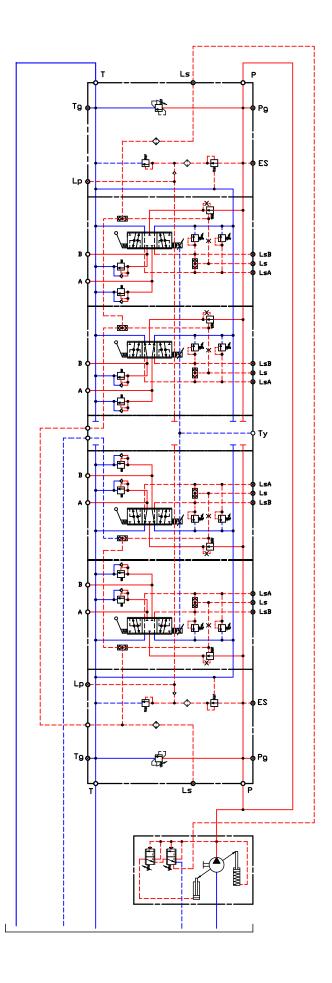
 $\overline{}$

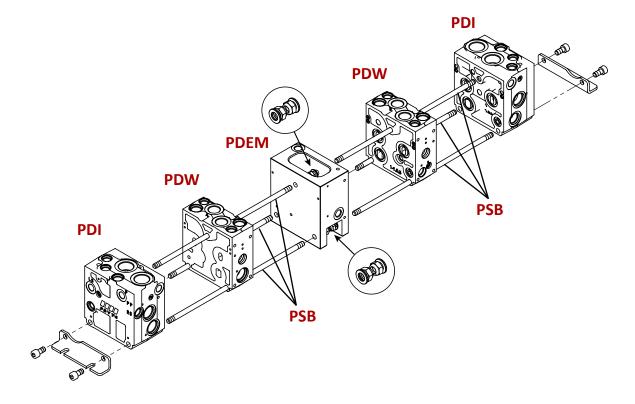
0⊫∰


G



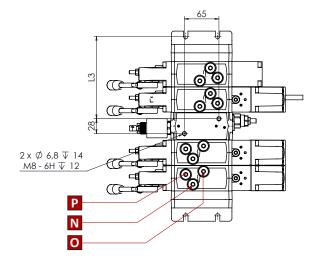
A = Pump side port - 3/4" BSPP - 17 mm deep [1 ¼6 in 12 UN-2B - 0,67 in deep]
B = T port - 3/4″ BSPP - 17 mm deep [1 ¼6 in 12 UN - 2B - 0,67 in deep]
C = Main pressure relief valve
D = Main pressure reducing valve
E = Pump pressure gauge connection - 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
F = LS connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
G = External pilot pressure supply connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
H = External feeding main pressure reducing valve 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
Tank pressure gauge connection 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]
I = Electrical LS/pump unloading function
K = Pump unloading drain port, 1/4" BSPP - 12 mm deep [7/6 in-20 UNF - 2B - 0,47 in deep]
L = Pump unloading mechanical override
M = A-B port mechanical flow adjustment
• = LSB remote pilot pressure connection 1/4" BSPP - 12 mm deep [7/16 in-20 UNF - 2B - 0,47 in deep]
$\mathbf{P} = LS$
Q = Port A 1/2" BSPP - 17 mm deep [% in-14 UNF-2B - 0,67 in deep]
S = LsB pilot pressure relief valve
\Box = LSA \checkmark
U = Shock/suction valve B port
V = Shock/suction valve A port
W = External drain connection electric actuations - 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]

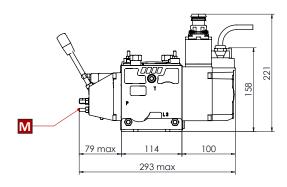

PDV74 Proportional valve Hydraulic diagram

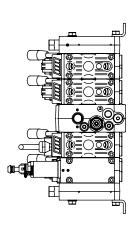


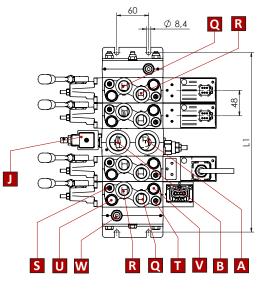
PDV74 Proportional valve Hydraulic diagram

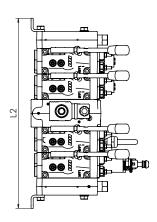
PDV74 Proportional Valve **PSB** Stay bolt kit - Double inlet sections and MID end section configuration

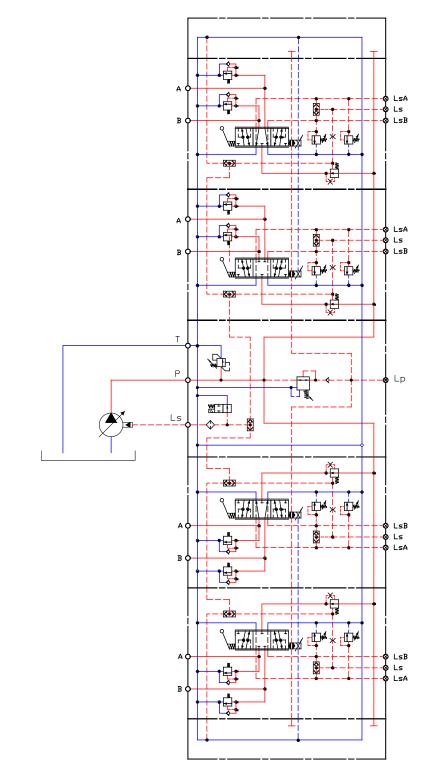



PDW	Code numbers	Tightening torque
1	PSB72011000	
2	PSB72021000	
3	PSB72031000	25 ± 2 Nm
4	PSB72041000	220 ±18 lb*in
5	PSB72051000	
6	PSB72061000	

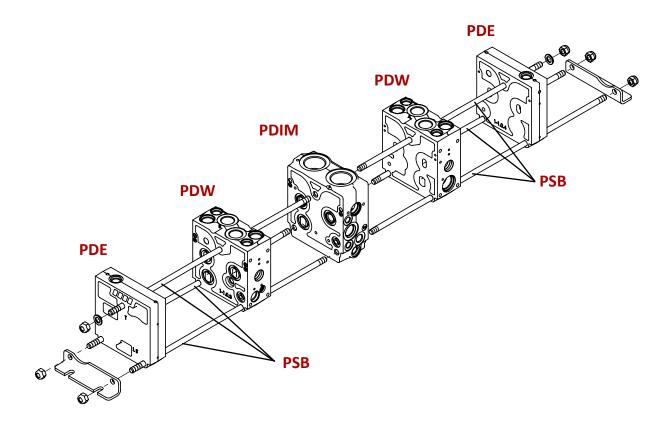





PDV74 Proportional valve Overall dimensions drawing with closed centre MID inlet section

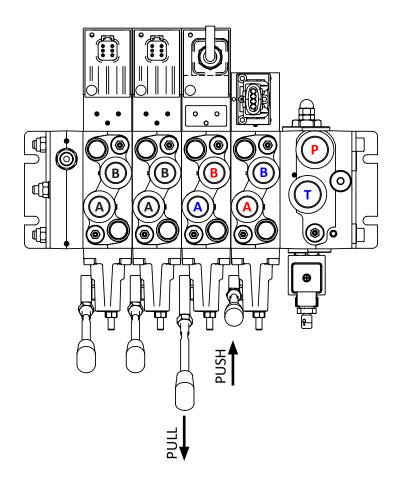


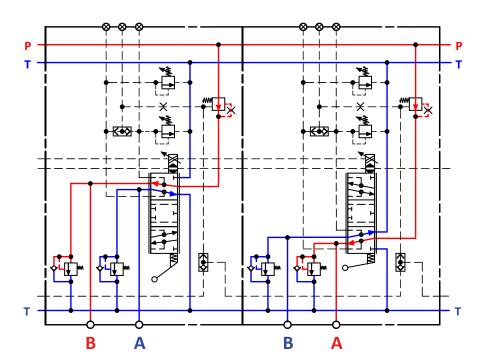
A = Pump side port - 3/4" BSPP - 17 mm deep [1 ¼6 in 12 UN-2B - 0,67 in deep]
B = T port - 3/4" BSPP - 17 mm deep [1 ¼6 in 12 UN - 2B - 0,67 in deep]
C = Main pressure relief valve
D = Main pressure reducing valve
E = Pump pressure gauge connection - 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
F = LS connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
G = External pilot pressure supply connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]
H = External feeding main pressure reducing valve 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]
Tank pressure gauge connection 1/4" BSPP - 12 mm deep [7/16 in-20 UNF-2B - 0,47 in deep]
J = Electrical LS/pump unloading function
K = Pump unloading drain port, 1/4" BSPP - 12 mm deep [7/6 in-20 UNF - 2B - 0,47 in deep]
L = Pump unloading mechanical override
M = A-B port mechanical flow adjustment
■ LSB remote pilot pressure connection 1/4" BSPP - 12 mm deep [7/6 in-20 UNF - 2B - 0,47 in deep]
Q = Port A B = Port B 1/2" BSPP - 17 mm deep [% in-14 UNF-2B - 0,67 in deep]
$\mathbf{R} = \text{Port B} \int \frac{1}{2} \frac$
S = Ls _B pilot pressure relief valve
U = Shock/suction valve B port
V = Shock/suction valve A port
W = External drain connection electric actuations - 1/4" BSPP - 12 mm deep [7/6 in-20 UNF-2B - 0,47 in deep]



PDV74 Proportional valve Hydraulic diagram

PDV74 with MID-inlet closed centre section (variable displacement pump), pilot oil supply for electro-hydraulic spool actuations

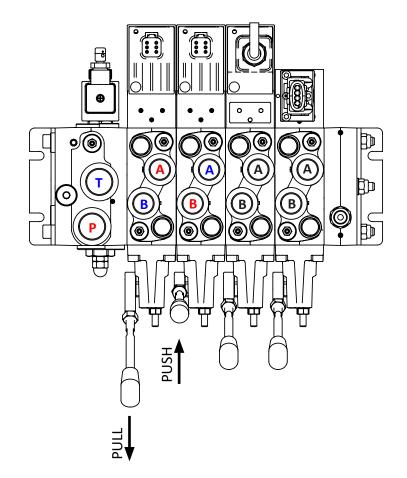


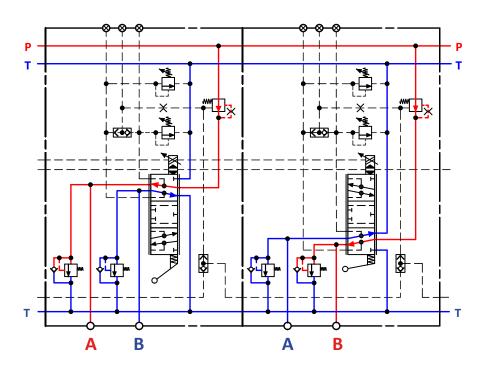

PDW	Code numbers	Tightening torque		
1	PSB71011000			
2	PSB71021000			
3	PSB71031000	25 ± 2 Nm		
4	PSB71041000	220 ±18 lb*in		
5	PSB71051000			
6	PSB71061000			

PDV74 Proportional valve Right side version

OMFB

HYDRAULIC POWER CONTROL

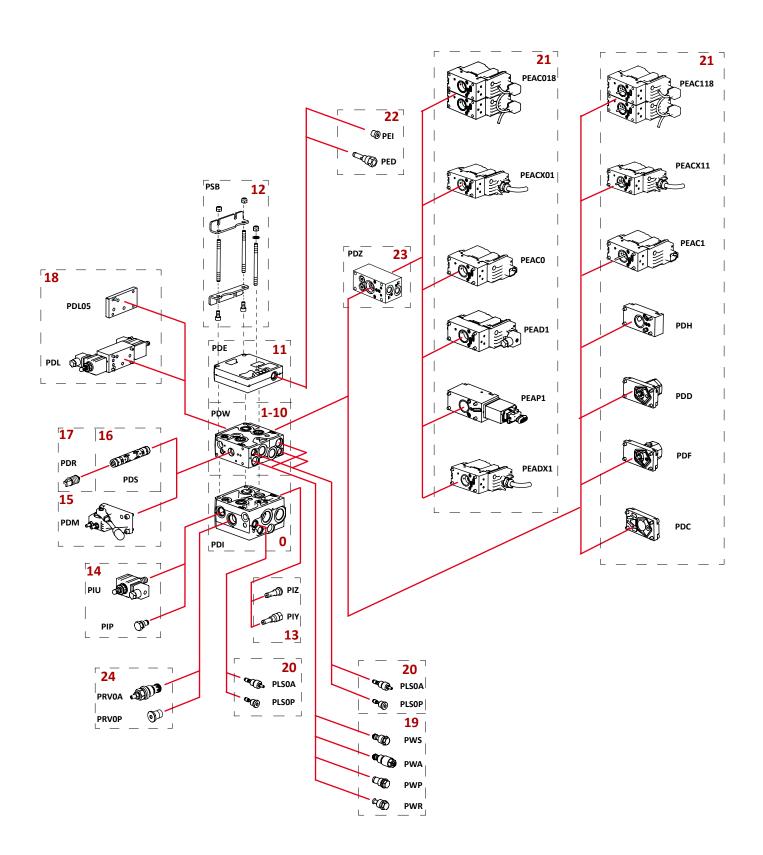




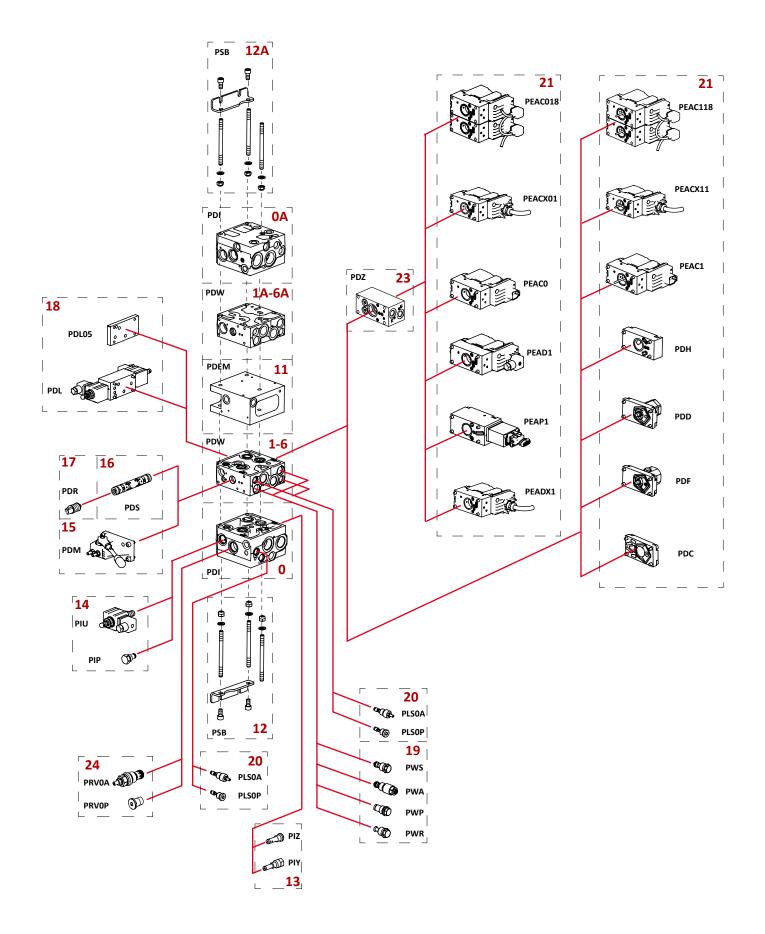
PDV74 Proportional valve Left side version

OMFB

HYDRAULIC POWER CONTROL

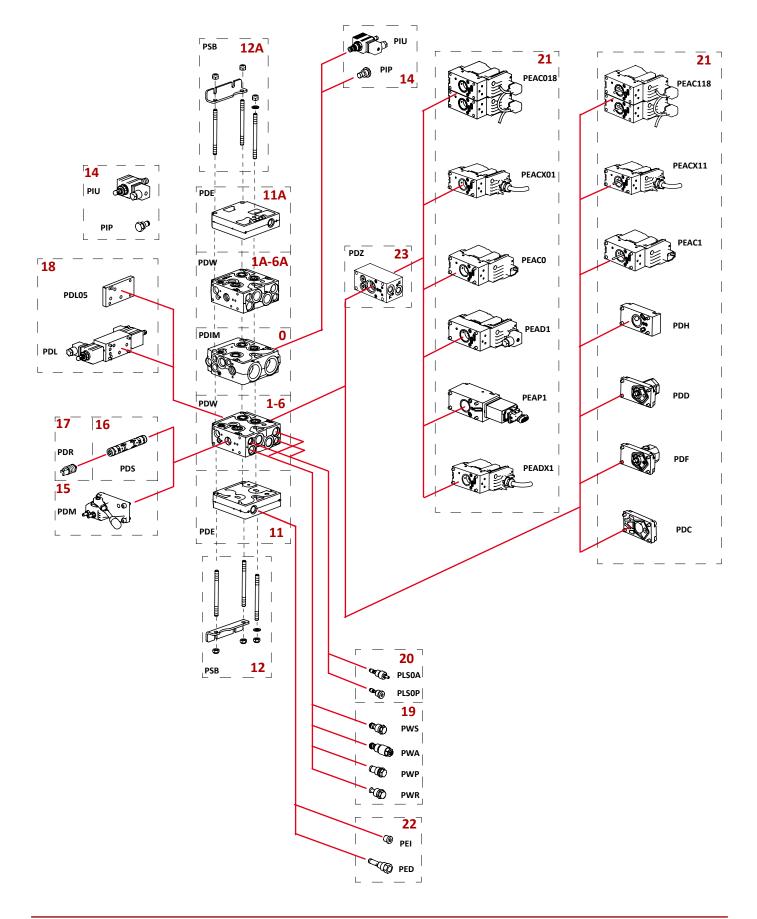


PDV74 Proportional valve Configuration with standard inlet sections - Right side assembly Product selection chart


This specification sheet, gives an overview of any modules with which the PDV74 is being assembled. Each module has its own field. The purpose of this chart is to provide a quick access to the module's choice, whose characteristics must always be checked on the catalog related data.

PDV74 Proportional valve, Product selection chart

Reference field		Code numbers see pag		
•	lulat as ation a	Open centre		<u>18</u> - <u>19</u>
0	Inlet sections	Closed centre	PDI	<u>21</u> - <u>22</u>
1-10	Working costions	with pressure compensator	PDW	<u> 166</u> - <u>26</u>
1-10	Working sections	without pressure compensator	PDW	<u>27</u> - <u>28</u>
11		PDE	<u>29</u> - <u>30</u>	
12		PSB	<u>118</u>	
12	Dilatail aveaby contridera	Internal	PIZ	<u>45</u>
13	Pilot oil supply cartridge	External	PIY	<u>45</u>
14		Solenoid Ls unloading	PIU	<u>23</u> - <u>24</u>
14	Plu	g for LS unloading cavity	PIP	<u>23</u>
15		Mechanical actuation	PDM	<u>42</u>
16		Spool	PDS	From <u>33</u> to <u>41</u>
17		Spool centered set	PDR	From <u>35</u> to <u>41</u>
		Unloading module	PDL	From <u>49</u> to <u>53</u>
18		PDL05		
		not adjustable	PWS	<u>46</u> - <u>47</u>
10	Shock and suction valve	adjustable	PWA	<u>46</u> - <u>47</u>
19	Plug for	PWP	<u>48</u>	
		PWR	<u>48</u>	
20	Pilo	t pressure LS _{A/B} relief valve	PLSOA	<u>43</u>
20		Set plug LS _{A/B} cavity	PLSOP	<u>43</u>
		Open loop spool control current signal for PWM and ON-OFF control	PEAD1	From <u>99</u> to <u>104</u>
		Open loop spool control high resolution	PEAC0	From <u>78</u> to <u>98</u>
		Closed loop spool control high performance resolution	PEAC1	From <u>54</u> to <u>77</u>
		Open loop spool control high resolution CAN-Bus	PEAC018	
	Proportional electro- hydraulic actuations	Closed loop spool control high performance resolution CAN-Bus	PEAC118	
21		Open loop spool control high resolution ATEX	PEACX01	
21		Closed loop spool control high performance resolution ATEX version	PEACX11	
		Open loop spool control current signal for PWM and ON-OFF control ATEX version	PEADX1	
		Open loop spool control current input signal for PWM and ON-OFF control - AMP JPT 4 pin	PEAP1	From <u>105</u> to <u>110</u>
		Hydraulic control	PDH	<u>43</u>
	Rear cover for	Detent	PDD	<u>44</u>
		Friction detent	PDF	<u>42</u>
		Mechanical actuation	PDC	<u>43</u>
22	End sections	External drain line cartridge	PED	<u>45</u>
<i>LL</i>		Internal plug	PEI	<u>45</u>
23	Du	al function control body	PDZ	<u>31</u> - <u>32</u>
24		PRVOA		
24	PI	ug for relief valve cavity	PRVOP	



PDV74 Proportional valve, Product selection chart

Reference field		Code numbers see pag		
0		Open centre		<u>18</u> - <u>19</u>
0A	Inlet sections	Closed centre	PDI	<u>21</u> - <u>22</u>
1-6	Working costions	with pressure compensator		<u> 166</u> - <u>26</u>
1A-6A	Working sections	without pressure compensator	PDW	<u>27</u> - <u>28</u>
11		End sections	PDEM	<u>30</u>
12 12A		PSB	<u>124</u>	
		Internal	PIZ	<u>45</u>
13	Pilot oil supply cartridge	External	PIY	<u>45</u>
		Solenoid Ls unloading	PIU	<u>23</u> - <u>24</u>
14	Plu	g for LS unloading cavity	PIP	<u>23</u>
15		Mechanical actuation	PDM	<u>42</u>
16		Spool	PDS	From <u>33</u> to <u>41</u>
17		Spool centered set	PDR	From <u>35</u> to <u>41</u>
		Unloading module	PDL	From <u>49</u> to <u>53</u>
18		Cover plate	PDL05	
		not adjustable	PWS	<u>46</u> - <u>47</u>
	Shock and suction valve	adjustable	PWA	<u>46 - 47</u>
19	Plug for	PWP	<u>48</u>	
		Suction valve	PWR	<u>48</u>
	Pilo	t pressure LS _{A/B} relief valve	PLSOA	<u>43</u>
20		Set plug LS _{A/B} cavity	PLSOP	43
		Open loop spool control current signal for PWM and ON-OFF control	PEAD1	From <u>99</u> to <u>104</u>
		Open loop spool control high resolution	PEAC0	From <u>78</u> to <u>98</u>
		Closed loop spool control high performance resolution	PEAC1	From <u>54</u> to <u>77</u>
		Open loop spool control high resolution CAN-Bus	PEAC018	
	Proportional electro- hydraulic actuations	Closed loop spool control high performance resolution CAN-Bus	PEAC118	
		Open loop spool control high resolution ATEX	PEACX01	
21		Closed loop spool control high performance resolution ATEX version		
		Open loop spool control current signal for PWM and ON-OFF control ATEX version	PEADX1	
		Open loop spool control current input signal for PWM and ON-OFF control - AMP JPT 4 pin	PEAP1	From <u>105</u> to <u>110</u>
		Hydraulic control	PDH	<u>43</u>
	Decreation	Detent	PDD	<u>44</u>
	Rear cover for	Friction detent	PDF	<u>42</u>
		Mechanical actuation	PDC	<u>43</u>
22	Employeet and	External drain line cartridge	PED	<u>45</u>
22	End sections	PEI	<u>45</u>	
23	Du	PDZ	<u>31</u> - <u>32</u>	
		PRVOA		
24	PI	PRVOP		

PDV74 Proportional valve, product selection chart Configuration with MID inlet section

PDV74 Proportional valve, Product selection chart

Reference field		Code numbers see pag						
•	1.1	Open centre XXXX						
0	Inlet sections	Closed centre	PDIM	<u>22</u>				
1-6		with pressure compensator		<u> 166</u> - <u>26</u>				
1A-6A	Working sections	without pressure compensator	PDW	<u> 27</u> - <u>28</u>				
11 11A		PDE	<u> 29</u> - <u>30</u>					
12 12A		Stay bolt set	PSB	<u>129</u>				
		Solenoid Ls unloading	PIU	<u>23</u> - <u>24</u>				
14	Plu	ig for LS unloading cavity	PIP	<u>23</u>				
15		Mechanical actuation	PDM	<u>42</u>				
16		Spool	PDS	From <u>33</u> to <u>41</u>				
17		Spool centered set	PDR	From <u>35</u> to <u>41</u>				
		Unloading module	PDL	From <u>49</u> to <u>53</u>				
18		Cover plate						
		not adjustable	PDL05 PWS	46 - 47				
	Shock and suction valve	adjustable	PWA	<u>46</u> - <u>47</u>				
19	Plug for	shock and suction valve cavity	PWP	<u>48</u>				
	i lugioi	PWR	<u>48</u>					
	Pilo	PLSOA	<u>43</u>					
20	FIIO	t pressure LS _{A/B} relief valve Set plug LS _{A/B} cavity	PLSOP	<u>43</u>				
		Open loop spool control current signal for PWM and ON-OFF control	PEAD1	From <u>99</u> to <u>104</u>				
		Open loop spool control high resolution	PEAC0	From <u>78</u> to <u>98</u>				
		Closed loop spool control high performance resolution	PEAC1	From <u>54</u> to <u>77</u>				
		Open loop spool control high resolution CAN-Bus	PEAC018					
	Proportional electro- hydraulic actuations	Closed loop spool control high performance resolution CAN-Bus	PEAC118					
		Open loop spool control high resolution ATEX	PEACX01					
21		Closed loop spool control high performance resolution ATEX version	PEACX11					
		Open loop spool control current signal for PWM and ON-OFF control ATEX version	PEADX1					
		Open loop spool control current input signal for PWM and ON-OFF control - AMP JPT 4 pin	PEAP1	From <u>105</u> to <u>110</u>				
		Hydraulic control	PDH	<u>43</u>				
	Rear cover for	Detent	PDD	<u>44</u>				
		Friction detent	PDF	<u>42</u>				
		Mechanical actuation	PDC	<u>43</u>				
22	End sections	External drain line cartridge	PED	<u>45</u>				
		PEI	<u>45</u>					
23	Du	PDZ	<u>31</u> - <u>32</u>					
24		PRVOA						
24	P	ug for relief valve cavity	PRVOP					

PDV74 Proportional valve Composition form for standard inlet section

						Code:	PDV74			stomer:			
	OM	F	B			Date:	_/_/		Customer ref:				
HYDRAULIC POWER CONTROL					-		Issued by:						
						Review date:	-			AFB sales ref:			
I	Valve type:		PDV 74		Wor	king sections Up:	10				12		
Ш	Type of threads:		BSPP	VI		king sections Down:				Certifications:	Nor	ne	
	Type of inlet:		standard Open Center	VII	Inle	t section side: pump type:	Right version		XI	During flow flowing			
IV	Pump type:		opencenter	VIII	2	oump type:			XII	Pump flow [l/min]:		N	
	Notes	_							40			Notes	
			B Port	0	bar				13	A Port			
0				20					14				
			Actuation side	24						Handle side			
	2	21		1	bar			bar	16		15		
1		17		20					20		_		
1	-			19					20 19				
	4	23							19				
		_		18									
		21		2	bar			bar			15		
2	1	17		20					20				
		23		19					19				
				18									
		21		3	bar			bar	16		15		
_		17		-	Jui			bai	20		13		
3	-			20					_		\vdash		
	2	23		19					19				
				18									
		21		4	bar			bar	16		15		
4	1	17		20					20				
-		23		19					19				
	-			18									
	2	21		5	bar			bar	16		15		
_		17		-	Dai			Dai	_		13		
5				20					20				
		23		19					19				
				18									
		21		6	bar			bar	16		15		
6	1	17		20					20				
		23		19					19				
	-			18									
	2	21		7	bar			bar	16		15		
		17		-	bur			Jui	20		15		
7		-'		20							\vdash		
		-		19					19		Щ		
				18									
		21		-	bar			bar			15		
8		17		20					20				
Ů	2	23		19					19				
		_1		18									
	2	21		9	bar			bar	16		15		
		17		20					20				
9		23		19					19		\vdash		
	4			18							\vdash		
-				_							4 -		
		21		-	bar			bar	_		15		
10	-	17		20					20		Ш		
	2	23		19					19				
				18									
				11					12				
11				22					H				
				H									
				ш						l			

PDV Composition form

O.M.F.B. S.p.A. - Hydraulic Components - 25050 Provaglio d'Iseo (BS) - Via Cave, 7/9

rev. 01 • 06/07/2020

PDV74 Proportional valve Composition form with double inlet section and MID End section

		F	D			Code:	PDV74			stomer:			
	OMFB HYDRAULIC POWER CONTROL			Date: / / Review index: -			ļ	Customer ref: Issued by:					
						Review date:			OMFB sales ref:				
	Valve type: Type of threads:		PDV 74 BSPP	6	Wor	king sections Up: king sections Down:	6 6		10	Rated voltage [V]: Certifications:	12 No	ne	
3	Type of inlet: Pump type:		nid_end Open Center	7	Inlet	section side: ump type:	Right version		11	Pump flow [l/min]:			
4	Pump type.		spendenter	0	2 -	ump type.			12	Pullip now [i/min].			
		Γ	B Port	0A	bar				13	A Port			
									14				
	Notes:	L	Actuators side							Handle side		Notes:	
				I	bar			bar					
	2	_		1A	Dai		· · · · · · · · · · · · · · · · · · ·		16		15		
1A	1	./		20 19				_	20 19				
				18									
	2	1		2A	bar		1	bar	16		15		
2A	1	.7		20					20				
	–			19					19				
				18					_				
	2			3A	bar			bar	_		15		
3A	1	.7		20 19	-				20 19				
		╈		19									
	2	1		4A	bar			bar	16		15		
4A	1	-		20	-				20				
-4				19				_	19				
				18					ļ				
	2	1		5A	bar			bar	16		15		
5A	1	.7		20					20				
	–	+		19 18				-	19				
	2	1		-	bar			bar	16		15		
	21	_		бА 20	Dar				20		15		
6A	1	./		19					20 19				
				18									
			r				I			T			
				11 12A					12				
			-										
								-		•			
	2	1		6	bar		1	bar	16		15		
6	1	.7		20					20				
	–	_		19				1	19				
		+		18									
	2	1		5	bar				16		15		
F 1	17	.7		20					20				
5													
5				19 18					19		_		
5	2	1		18	bar			bar			15		
	2	_		18	bar			bar			15		
4		_		18 4	bar			bar	16		15		
		_		18 4 20	bar			bar	16 20		15		
	1	_		18 4 20 19 18	bar bar			bar	16 20 19		15		
	1	.7		18 4 20 19 18 3 20				bar :	16 20 19 16 20				
4	2	.7		18 4 20 19 18 3 20 19				bar :	16 20 19				
4	1 2 1	.7		18 4 20 19 18 3 20 19 18	bar			bar bar	16 20 19 16 20 19		15		
4	1 2 1 2 2	.7 .1 .7 .7 .1		18 4 20 19 18 3 20 19 18 2				bar bar bar bar	16 20 19 16 20 19				
4	1 2 1	.7 .1 .7 .7 .1		18 4 20 19 18 3 20 19 18 20 20	bar			bar bar bar bar	16 20 19 16 20 19		15		
4	1 2 1 2 2	.7 .1 .7 .7 .1		18 4 20 19 18 3 20 19 18 2	bar			bar bar bar bar	16 20 19 16 20 19		15		
4	1 2 1 2 2	.7 1 1 1 .7 .7 .7 .7		18 4 20 19 18 3 20 19 18 2 20 19 18 20 19 18	bar			bar bar bar bar	16 20 19 16 20 19		15		
4 3 2	1 2 1 1 1 1 1 1	.7 11 .7 .7 .7 .7 .7 .7 .7 .7		18 4 20 19 18 3 20 19 18 2 20 19 18 20 19 18	bar bar			bar	16 20 19 16 20 19		15		
4	1 2 1 1 1 1 1 2 2 2 2 2	.7 11 .7 .7 .7 .7 .7 .7 .7 .7		18 4 20 19 18 20 19 18 2 20 19 18 2 19 18 2 19 18 1 20 19 18 1 20 19	bar bar			bar s s s s s s s s s s s s s s s s s s s	16 20 19 16 20 19 16 20 19		15		
4 3 2	1 2 1 1 1 1 1 2 2 2 2 2	.7 11 .7 .7 .7 .7 .7 .7 .7 .7		18 4 20 19 18 3 20 19 18 2 20 19 18 1 20 19 18 1 20	bar bar			bar s s s s s s s s s s s s s s s s s s s	16 20 19 16 20 19 16 20 19		15		
4 3 2	1 2 1 1 1 1 1 2 2 2 2 2	.7 11 .7 .7 .7 .7 .7 .7 .7 .7 .7		18 4 20 19 18 3 20 19 18 2 20 19 18 2 20 19 18 2 20 19 18 1 200 19 18 1 200 19 18	bar bar bar			bar bar bar bar	16 20 19 16 20 19 16 20 19 16 20 19		15		
4 3 2	1 2 1 1 1 1 1 2 2 2 2 2	.7 11 .7 .7 .7 .7 .7 .7 .7 .7 .7	A Port	18 4 20 19 18 3 20 19 18 2 20 19 18 2 20 19 18 2 20 19 18 1 200 19 18 1 200 19 18	bar bar			bar bar bar bar bar	16 20 19 16 20 19 16 20 19	B Port	15		
4 3 2	1 2 1 1 1 1 1 2 2 2 2 2	.7 11 .7 .7 .7 .7 .7 .7 .7 .7 .7	A Port Actuators side	18 4 20 19 18 3 20 19 18 2 20 19 18 2 20 19 18 2 20 19 18 1 200 19 18 1 200 19 18	bar bar bar			bar bar bar bar bar	16 20 19 16 20 19 16 20 19 16 20 19	B Port Handle side	15		

PDV Composition form

O.M.F.B. S.p.A. - Hydraulic Components - 25050 Provaglio d'Iseo (BS) - Via Cave, 7/9

PDV74 Proportional valve Composition form with MID inlet section

OMFB			Code: PDV74 Date: _/ Review index: -			Customer: Customer ref: Issued by:						
HYDRAULIC POV		WER	ER CONTROL		Review date:		-			OMFB sales ref:		
	Valve type:		V 74			king sections Up:	6				12	
3	Type of threads: Type of inlet:		d_inlet	7	Inlet	king sections Down: section side:	6 Right versio	on	11	Certifications:	No	ne
4	Pump type:	Ор	en Center	8	2 nd p	ump type:			12	Pump flow [l/min]:		
		Г		11A					12/		l	
			A Port P	22						B Port		
	Notes:	1	Actuators side							Handle side		Notes:
		1		T					1			
	2:	1		6A	bar			bar	16		15	
6A	1	7		20					20			
	-			19 18					19			
	2:	1			bar			bar	16		15	
5A	1	_		20					20			
57				19					19			
				18								
	2:	1		4A	bar			bar	16		15	
4A	1	7		20					20		Ц	
	-	+		19 18					19		\vdash	
	2:	1			bar			bar	16		15	
ЗA	1			20					20		Ĥ	
JA				19					19			
				18								
	2:	1		2A	bar			bar	16		15	
2A	1	7		20					20			
	-			19 18					19			
	2:	1			bar			bar	16		15	
1A	1	_		20	Đu.				20			
IA	-			19					19			
				18								
				0	bar				14			
					Dai				14			
									1			
	2:	_		1	bar			bar	16		15	
1	1	7		20 19					20 19			
	-	-		19					19			
	2:	1		2	bar			bar	16		15	
2	1			20					20		\vdash	
Ĺ				19					19			
				18							\square	
	2:	_		3	bar			bar			15	
3	1	7		20					20		Ц	
		+		19 18					19		\vdash	
	2:	1		4	bar			bar	16		15	
4	1	_		20					20		H	
4	1			19					19			
				18					Ц			
	2:	1		5	bar			bar	16		15	
5	1	7		20					20		Ц	
	_	+		19 18					19		\vdash	
		1		6	bar			bar	16		15	
	21			6 20	Jai			bar	16 20		10	
6		-		20 19					20 19		\vdash	
				18								
		Ē		4.					12		1	
			B Port	11 22					12	A Port		
			Actuators side	Ē						Handle side		

PDV Composition form

O.M.F.B. S.p.A. - Hydraulic Components - 25050 Provaglio d'Iseo (BS) - Via Cave, 7/9