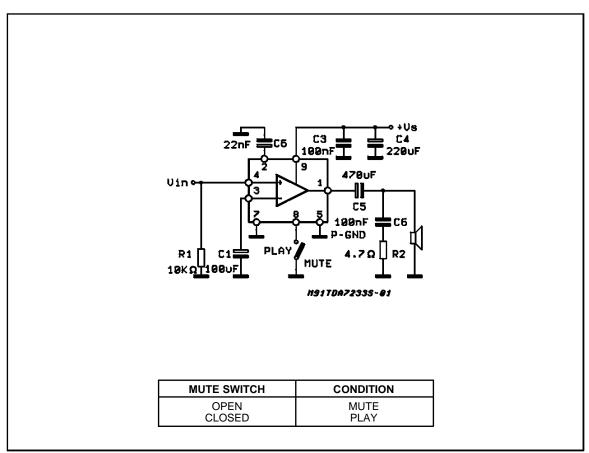
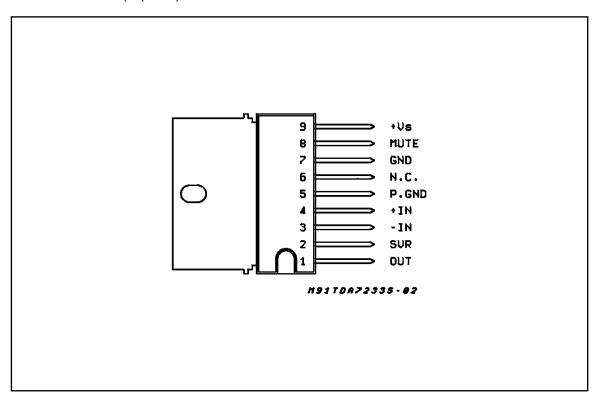

TDA7233S

1W AUDIO AMPLIFIER WITH MUTE


- OPERATING VOLTAGE 1.8 TO 15V
- EXTERNAL MUTE OR POWER DOWN FUNCTION
- IMPROVED SUPPLY VOLTAGE REJECTION
- LOW QUIESCENT CURRENT
- HIGH POWER CAPABILITY
- LOW CROSSOVER DISTORTION

DESCRIPTION

The TDA7233S is a monolithic integrated circuit in SIP9, intended for use as class AB power amplifier with a wide range of supply voltage from 1.8V to 15V in portable radios, cassette recorders and players.


TEST AND APPLICATION CIRCUIT

May 1997 1/6

TDA7233S

PIN CONNECTION (Top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	16	V
Io	Output Peak Current	1	Α
P _{tot}	Total Power Dissipation T _{amb} = 50°C	1	W
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C

THERMAL DATA

Symbol	Description		Value	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient	Max	70	°C/W
R _{th j-case}	Thermal Resistance Junction-pins	Max	10	°C/W

ELECTRICAL CHARACTERISTICS (V_S = 6V, T_{amb} = 25°C, unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Voltage		1.8		15	V
Vo	Quiescent Output Voltage			27		V
		$V_S = 3V$ $V_S = 9V$		1.2 4.2		\ \ \
I _d	Quiescent Drain Current	PLAY		3.6	9	mA
		MUTE		0.4		mA
l _b	Input Bias Current			100		nA
P _O	Output Power	$\begin{array}{lll} d = 10\% & f = 1 \text{kHz} \\ V_S = 12 V & R_L = 8 \Omega \\ V_S = 9 V & R_L = 4 \Omega \\ V_S = 9 V & R_L = 8 \Omega \\ V_S = 6 V & R_L = 8 \Omega \\ V_S = 6 V & R_L = 4 \Omega \\ V_S = 3 V & R_L = 4 \Omega \\ V_S = 3 V & R_L = 8 \Omega \end{array}$	0.8 0.45	1.9 1.6 1 0.4 0.7 110 70		&
d	Distortion	$P_O = 0.5W$ $R_L = 8\Omega$ $f = 1KHz$ $V_S = 9V$		0.3		%
G _V	Closed Loop Voltage Gain	f = 1KHz		39		dB
R _{IN}	Input Resistance	f = 1KHz	100			ΚΩ
e _N	Total Input Noise ($R_S = 10K\Omega$)	B = Curve A		2		μV
		B = 22Hz to 22KHz		3		μV
SVR	Supply Voltage Rejection	$R_g = 10K\Omega$ f = 100Hz	40	45		dB
	MUTE Attenuation	$V_0 = 1V$, f = 100Hz to 10KHz		70		dB
	MUTE Threshold			0.6		V
I _M	MUTE Current	V _S = 15V		0.4	2	mA

Figure 1: Output Power vs. Supply Voltage

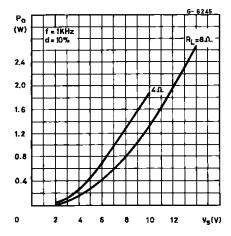


Figure 2: Supply Voltage Rejection vs. Frequency

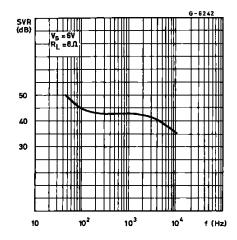


Figure 3: DC Output Voltage vs. Supply Voltage

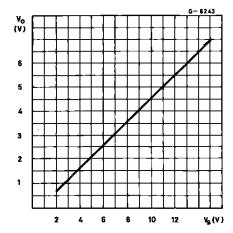
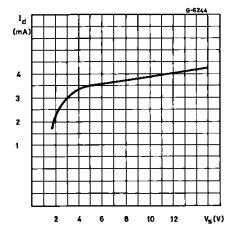
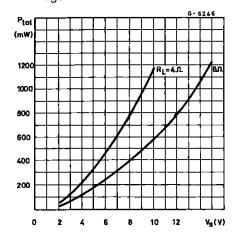




Figure 4: Quiescent Current vs. Supply Voltage

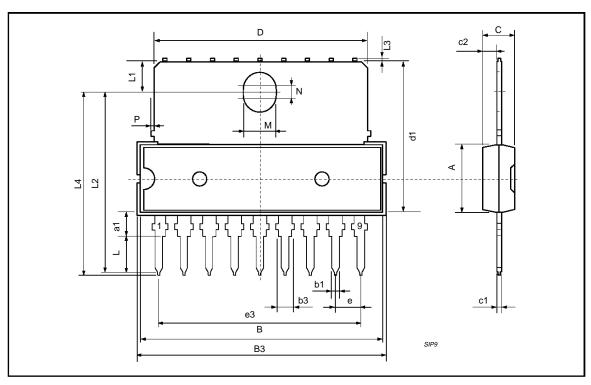


Figure 5: Total Dissipated Power vs. Supply Voltage

SIP9 PACKAGE MECHANICAL DATA

DIM.	mm				inch		
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			7.1			0.280	
a1	2.7		3	0.106		0.118	
В			23			0.90	
В3			24.8			0.976	
b1		0.5			0.020		
b3	0.85		1.6	0.033		0.063	
С		3.3			0.130		
c1		0.43			0.017		
c2		1.32			0.052		
D			21.2			0.835	
d1		14.5			0.571		
е		2.54			0.100		
e3		20.32			0.800		
L	3.1			0.122			
L1		3			0.118		
L2		17.6			0.693		
L3			0.25			0.010	
L4	17.4		17.85	0.685		0,702	
М		3.2			0.126		
N		1			0.039		
Р			0.15			0.006	

SGS-THOMSON MICROELECTRONICS

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

6/6